Ciencia sin seso… locura doble

Píldoras sobre medicina basada en pruebas

Guardado porSeptiembre 2012
image_pdf

El juego de las potencias

Los números son una cosa muy curiosa. Parece increíble a veces lo que se puede conseguir haciendo operaciones con algunos de ellos. Incluso puedes obtener otros números diferentes que expresan cosas distintas. Este es el caso del proceso mediante el cual podemos tomar los valores de una distribución y, a partir de la media aritmética (una medida de centralización) calcular cómo se separan de ella el resto de los valores e ir elevándolos a potencias sucesivas para obtener medidas de dispersión e, incluso, de simetría. Ya sé que parece mentira, pero os juro que es verdad. Lo acabo de leer en un libro bastante gordo. Os cuento cómo…

Una vez que tenemos la media aritmética podemos calcular el promedio de separación de cada valor respecto a ella. Restamos a cada valor la media y lo dividimos por el total de valores (es como calcular la media aritmética de las desviaciones de cada valor respecto a la media de la distribución). Pero hay un pequeño problema: como la media siempre está en medio (de ahí su nombre), las diferencias de los valores mayores (que serán positivas) se anularán con las de los valores menores (que serán negativas) y el resultado será siempre cero. Es lógico, y es una propiedad intrínseca de la media, que se aleja de todos una cantidad promedio igual. Como no podemos cambiar este carácter de la media, lo que sí podemos hacer es calcular el valor absoluto de cada resta antes de sumarlas. Calculamos así la desviación media, que es el promedio de los valores absolutos de las desviaciones de los valores con respecto a la media aritmética.

Y aquí empieza el juego de las potencias. Si en lugar de hacer el valor absoluto de las rectas las elevamos al cuadrado antes de sumarlas podemos calcular la varianza, que es la media de las desviaciones al cuadrado con respecto a la media aritmética. Ya sabemos que si hacemos la raíz cuadrada de la varianza (para recuperar las unidades originales de la variable) obtenemos la desviación estándar, que es la reina de las medidas de dispersión.

¿Y si elevamos las diferencias al cubo en lugar de al cuadrado?. Pues calcularemos el promedio del cubo de las desviaciones de los valores con respecto a la media. Si pensamos un poco en seguida nos daremos cuenta de que al elevar al cubo no perdemos los signos negativos. De esta forma, si hay predominio de valores menores (la distribución está sesgada hacia la izquierda) el resultado será negativo y, por el contrario, si predominan los valores mayores, positivo (la distribución estará sesgada hacia la derecha). Un último detalle: para poder comparar este índice de simetría con otras distribuciones debemos estandarizarlo dividiéndolo por el cubo de la desviación típica, según la fórmula que os pongo en el recuadro adjunto. La verdad es que, viéndola, acojona un poco, pero no os preocupéis, los programas de estadística pueden con esto y con cosas peores.

Y como ejemplo de cosa peor, ¿qué pasa si elevamos las restas a la cuarta potencia en lugar de al cubo?. Pues calcularemos el promedio de la cuarta potencia de las desviaciones de los valores con respecto a la media. Si nos paramos a pensar un segundo, rápidamente entenderemos su utilidad. Si todos los valores están muy cerca de la media, al multiplicarlos por sí mismos cuatro veces (elevarlos a la cuarta potencia) se harán más pequeños que si están muy alejados de la media. Así, si hay muchos valores cerca de la media (la curva de la distribución será más puntiaguda) el valor será menor que si los valores están más dispersos. Este parámetro puede estandarizarse dividiéndolo por la cuarta potencia de la desviación estándar para obtener el apuntamiento o curtosis, lo que me da pie a introducir tres palabros más: si la distribución es muy puntiaguda se denominará leptocúrtica, si los valores están dispersos por los extremos la llamaremos platicúrtica y, si ni una cosa ni la otra, mesocúrtica.

¿Y si elevamos las restas a la quinta potencia?. Pues no sé deciros qué ocurriría. Afortunadamente, y hasta donde yo sé, a nadie se le ha ocurrido todavía semejante ordinariez.

Todo este cálculo de medidas de centralización, dispersión y simetría puede parecer el delirio de alguien con muy poco trabajo, pero no os engañéis: son muy importantes, no solo para resumir de forma adecuada una distribución, sino para determinar el tipo de prueba estadística que debemos utilizar cuando queramos hacer un contraste de hipótesis. Pero esa es otra historia…

Dame una barra y estandarizaré el mundo

Pero no me vale una barra cualquiera. Tiene que ser una barra muy especial. O mejor, una serie de barras. Y no estoy pensando en un diagrama de barras, tan conocidos y utilizados que cuando abres el PowerPoint casi te hace uno sin que se lo pidas. No, estos diagramas son muy insulsos, solo representan cuántas veces se repite cada uno de los valores de una variable cualitativa, pero no nos dicen nada más.

Yo estoy pensando en un diagrama mucho más profundo. Me refiero al histograma. ¡Vaya!, me diréis, pues no es otro diagrama de barras. Sí, pero de otra clase de barras, mucho más informativas. Para empezar, el histograma se utiliza (o debería) para representar frecuencias de variables cuantitativas continuas. El histograma no es un diagrama de barras, sino una distribución de frecuencias. ¿Y eso qué significa?. Pues que las barras, en el fondo, son algo artificial. Supongamos una variable cuantitativa continua como puede ser el peso. Imaginemos que el rango de nuestra distribución va de 38 a 118 kg de peso. En teoría, podemos tener infinitos valores de peso (como con cualquier variable continua), pero para representar la distribución dividimos el rango en un número de intervalos arbitrario y dibujamos una barra para cada intervalo cuya altura (y, por tanto, superficie) sea proporcional al número de casos del intervalo. Eso es un histograma: la distribución de frecuencias.

Ahora supongamos que hacemos los intervalos cada vez más estrechos. El perfil que forman las barras se irá pareciendo cada vez más a una curva según se estrechen los intervalos. Al final, lo que tendremos será una curva que se llama curva de densidad de probabilidad. La probabilidad de un determinado valor será cero (uno pensaría que debería ser la altura de la curva en ese punto, pero resulta que no, que es cero), pero la probabilidad de los valores de un determinado intervalo será igual a la superficie del área bajo la curva en ese intervalo. Y, ¿cuál será el área bajo toda la curva?. Pues fácil: la probabilidad de encontrar cualquier valor, o sea, uno (100% para los amigos del porciento).

Veis, pues, que el histograma es mucho más de lo que parece. Nos dice que la probabilidad de encontrar un valor inferior a la media es 0,5, pero no solo eso, sino que podemos calcular la densidad de probabilidad de cualquier valor utilizando una formulita que prefiero no poner porque cerraríais  el navegador y dejaríais de leer esta entrada. Además, hay una forma de solucionarlo algo más simple.

Con las variables que siguen una distribución normal (la famosa campana) la solución es sencilla. Sabemos que una distribución normal se define perfectamente por su media y su desviación estándar. El problema es que cada distribución tiene las suyas, con lo que la densidad de probabilidad también es específica de cada distribución. ¿Qué hacemos?. Pues nos inventamos una distribución normal estándar de media cero y desviación típica 1 y nos estudiamos su densidad de probabilidad de tal forma que no necesitemos fórmulas ni tablas para conocer la probabilidad de un segmento determinado.

Una vez hecho esto, tomamos cualquier valor de nuestra distribución y los transformamos en su alma gemela de la distribución estándar. A este proceso se le denomina estandarización y es tan sencillo como restar al valor la media y dividirlo por la desviación típica. Así obtenemos otro de los estadísticos que los médicos en general, y los pediatras en particular, veneramos más profundamente: el z score.

Las probabilidades de la distribución estándar son bien conocidas. Un z de cero está en la media. El intervalo de z = 0 ± 1,64 engloba el 90% de la distribución, el z = 0 ± 1,96 el 95%, y el z = 0 ± 2,58 el 99%. Lo que se hace, en la práctica, es determinar el z deseable para la variable que medimos, una vez estandarizada. Este valor suele ser ±1 ó ± 2, según lo que midamos. Además, podemos comparar cómo se modifica el z en determinaciones sucesivas.

El problema surge porque en medicina hay muchas variables cuya distribución se encuentra sesgada y no se ajusta a una distribución normal, como es el caso de la talla, el colesterol sanguíneo y muchas otras. Pero no desesperéis, para eso los matemáticos se han inventado una cosa que llaman el teorema central del límite, que viene a decir que si el tamaño de la muestra es lo suficientemente grande podemos estandarizar cualquier distribución y enlazarla con la distribución normal estándar. Este teorema es una cosa estupenda, ya que permite estandarizar incluso para variables no continuas que siguen otro tipo de distribuciones como la binomial, la de Poisson u otras.

Pero la cosa no queda aquí. La estandarización es la base para calcular otras características de la distribución, como su índice de asimetría o su curtosis, y está además en la base de muchas pruebas de contraste de hipótesis que buscan estadísticos de distribución conocida para calcular la significación, pero esa es otra historia…

El estadístico más deseado por una madre

Aquellos que estéis leyendo y que forméis parte de la mafia de los pediatras ya sabréis a que me estoy refiriendo: al percentil 50. No hay madre que no desee que su retoño se encuentre por encima de él en peso, talla, inteligencia y en todo lo que una buena madre pueda desear para su hijo. Por eso a los pediatras, que dedicamos nuestra vida al cuidado de los niños, nos gustan tanto los percentiles. Pero, ¿qué significado tiene el término percentil?. Empecemos desde el principio…

Cuando tenemos una distribución de valores de una variable podemos resumirla con una medida de centralización y una de dispersión. Las más habituales son la media y la desviación estándar, respectivamente, pero en ocasiones podemos utilizar otras medidas de centralización (como la mediana o la moda) y de dispersión.

La más básica de esas otras medidas de dispersión es el rango, que se define como la diferencia entre los valores mínimo y máximo de la distribución. Supongamos que reunimos los pesos al nacimiento de los últimos 100 niños de nuestra maternidad y los ordenamos tal y como aparecen en la tabla. El valor más bajo fue de 2200 gramos, mientras que el premio máximo se lo llevó un neonato que pesó 4000 gramos. El rango en este caso sería de 1800 gramos pero, claro está, si no disponemos de la tabla y solo nos dicen esto no tendríamos idea de cómo de grandes son nuestros recién nacidos. Por eso suele ser mejor expresar el rango con los valores mínimo y máximo. En nuestro caso sería de 2200 a 4000 gramos.

Si recordáis de cómo se calcula la mediana, veréis que está en 3050 gramos. Para completar el cuadro necesitamos una medida que nos diga cómo se distribuyen el resto de los pesos alrededor de la mediana y dentro del rango.

La forma más sencilla es dividir la distribución en cuatro partes iguales que incluya cada una el 25% de los niños. Cada uno de estos marcadores se denomina cuartil y hay tres: el primer cuartil (entre el mínimo y el 25%), el segundo cuartil (que coincide con la mediana y se sitúa entre el mínimo y el 50%) y el tercer cuartil (entre el mínimo y el 75%). Obtenemos así cuatro segmentos: del mínimo al primer cuartil, del primero al segundo (la mediana), del segundo al tercero y del tercero al máximo. En nuestro caso, los tres cuartiles serían 2830, 3050 y 3200 gramos. Hay quien llamaría a estos cuartiles el inferior, la mediana y el superior, pero estaríamos hablando de lo mismo.

Pues bien, si nos dicen que la mediana es de 3050 gramos y que el 50% de los niños pesan entre 2830 y 3200 gramos, ya nos hacemos una idea bastante aproximada de cuál es el peso al nacimiento de nuestros recién nacidos. Este intervalo se denomina rango intercuartílico y suele proporcionarse junto con la mediana para resumir la distribución. En nuestro caso: mediana de 3050 gramos, rango intercuartílico de 2830 a 3200 gramos.

Pero podemos ir mucho más allá. Podemos dividir la distribución en el número de segmentos que queramos. Los deciles la dividen en diez segmentos y nuestros venerados percentiles en cien.

Existe una fórmula bastante sencilla para calcular el percentil que queramos. Por ejemplo, el percentil P estará en la posición (P/100)x(n+1), donde n representa el tamaño de la muestra. En nuestra distribución de neonatos, el percentil 22 estaría en la posición (22/100)x(100+1) = 22,2, o sea, 2770 gramos.

Los más avispados ya os habréis dado cuenta que nuestros 3050 gramos corresponden, no solo a la mediana, sino también al decil quinto y al percentil 50, el deseado por nuestras madres.

La gran utilidad de los percentiles, además de dar satisfacción al 50% de las madres (aquellas que tienen a sus hijos por encima de la media) es que nos permiten estimar la probabilidad de determinado valor de la variable medida dentro de la población. En general, cuanto más cerca esté uno de la media siempre será mejor (por lo menos en medicina) y cuanto más alejado más probable será que alguien te lleve a un médico para ver porqué no estás en el dichoso percentil 50 o, incluso mejor, algo por encima.

Pero si de verdad queremos afinar más sobre la probabilidad de obtener un valor determinado dentro de una distribución de datos hay otros métodos que pasan por la estandarización de la medida de dispersión que utilicemos, pero esa es otra historia…

No todas las desviaciones son perversas

Incluso me atrevería a decir que hay desviaciones muy necesarias. Pero que nadie se entusiasme antes de tiempo. Aunque haya podido parecer otra cosa, vamos a hablar de cómo varían los valores de una variable cuantitativa en una distribución.

Cuando obtenemos los datos de un parámetro determinado en una muestra y queremos dar una idea resumida de cómo se comporta, lo primero que se nos ocurre es calcular una medida que la represente, así que echamos mano de la media, la mediana o cualquier otra medida de centralización.

Sin embargo, el cálculo del valor central da poca información si no lo acompañamos de otro que nos informe sobre la heterogeneidad de los resultados dentro de la distribución. Para cuantificar el grado de variación, los matemáticos, con muy poca imaginación, han inventado una cosa que llaman la varianza.

Para calcularla se restaría la media al valor de cada individuo con la idea de sumar todas estas restas y dividirlas entre el número de mediciones. Es como calcular la media de las diferencias de cada uno respecto al valor central de la distribución. Pero surge un pequeño problema: como los valores están por encima y por debajo de la media (por obligación, que para eso es la media), las diferencias positivas y negativas se anularían al sumarlas, con lo que obtendríamos un valor próximo a cero si la distribución es simétrica aunque el grado de variación fuese grande. Para evitar esto lo que se hace es elevar las restas al cuadrado antes de sumarlas, con lo que desaparecen los signos negativos y la suma siempre da un valor relacionado con la amplitud de las diferencias. Esto es lo que se conoce como varianza.

Por ejemplo, supongamos que medimos la presión arterial sistólica a 200 escolares seleccionados al azar y obtenemos una media de 100 mmHg. Nos ponemos a restar de cada valor la media, lo elevamos al cuadrado, sumamos todos los cuadrados y dividimos el resultado por 200 (el número de determinaciones). Obtenemos así la varianza, por ejemplo: 100 mmHg2. Y yo me pregunto, ¿qué leches es un milímetro de mercurio al cuadrado?. La varianza medirá bien la dispersión, pero no me negaréis que es un poco difícil de interpretar. Una vez más, algún genio matemático acude al rescate y discurre la solución: hacemos la raíz cuadrada de la varianza y así recuperamos las unidades originales de la variable. Acabamos de encontrarnos con la más famosa de las desviaciones: la desviación típica o estándar. En nuestro caso sería de 10 mmHg. Si consideramos las dos medidas nos hacemos idea de que la mayor parte de los escolares tendrán probablemente tensiones próximas a la media. Si hubiésemos obtenido una desviación típica de 50 mmHg pensaríamos que hay mucha variación individual de los datos de presión arterial, aunque la media de la muestra fuese la misma.

Un detalle para los puristas. La suma del cuadrado de las diferencias suele dividirse por el número de casos menos uno (n-1) en lugar de por el número de casos (n), que podría parecer más lógico. ¿Y por qué?. Capricho de los matemáticos. Por alguna arcana razón se consigue que el valor obtenido esté más próximo al valor de la población del que procede la muestra.

Ya tenemos, por tanto, los dos valores que nos definen nuestra distribución. Y lo bueno es que, no solo nos dan una idea del valor central y de la dispersión, sino de la probabilidad de encontrar un individuo de la muestra con un determinado valor.  Sabemos que el 95% tendrán un valor comprendido entre la media ± 2 veces la desviación típica (1,96 veces, para ser exactos) y el 99% entre la media ± 2,5 veces la desviación (2,58 veces, en realidad).

Esto suena peligrosamente parecido a los intervalos de confianza del 95% y 99%, pero no debemos confundirlos. Si repetimos el experimento de la tensión en escolares un número muy grande de veces, obtendremos una media ligeramente diferente cada vez. Podríamos calcular la media de los resultados de cada experimento y la desviación estándar de ese grupo de medias. Esa desviación estándar es lo que conocemos como el error estándar, y nos sirve para calcular los intervalos de confianza dentro de los cuales está el valor de la población de la que procede la muestra y que no podemos medir directamente ni conocer con exactitud. Por lo tanto, la desviación estándar nos informa de la dispersión de los datos en la muestra, mientras que el error estándar nos da idea de la precisión con que podemos estimar el verdadero valor de la variable que hemos medido en la población de la que procede la muestra.

Una última reflexión acerca de la desviación estándar. Aunque el valor de la variable en el 95% de la población esté en el intervalo formado por la media ± 2 veces la desviación típica, esta medida solo tiene sentido realizarla si la distribución es razonablemente simétrica. En caso de distribuciones con un sesgo importante la desviación típica pierde gran parte de su sentido y debemos utilizar otras medidas de dispersión, pero esa es otra historia…