Ciencia sin seso… locura doble

Píldoras sobre medicina basada en pruebas

Guardado porAbril 2015
image_pdf

Que no se te crucen los cables

El ahorro es un condicionante importante a la hora de realizar cualquier estudio, especialmente si se trata de un ensayo clínico, habitualmente costoso en tiempo y dinero. Por eso tratan de diseñarse nuevas formas de hacer los estudios que nos permitan ahorrar, la mayor parte en lo que se refiere al número de participantes necesarios, uno de los principales condicionantes del coste final del estudio.

ensayo cruzadoUno de estos diseños es el ensayo clínico cruzado, del que ya hablamos en una entrada anterior. En este tipo de ensayos cada sujeto es aleatorizado a un grupo, se realiza la intervención, se deja pasar un periodo de lavado o blanqueo y se realiza la otra intervención, tal como veis esquematizado en el gráfico que os adjunto. Al actuar cada sujeto como su propio control se limita el efecto de las variables confusoras que puedan existir, además de ser menor la variabilidad que pueda deberse al azar respecto a los estudios en que los sujetos de intervención y los controles son diferentes. Esto hace que el tamaño muestral pueda ser menor que el del ensayo clínico en paralelo convencional.

Para poder hacer un ensayo cruzado, el efecto debe ser de producción rápida y de corta duración, a la vez que mantenerse estable a lo largo de los periodos del estudio. En caso contrario podemos encontrarnos con las dos debilidades metodológicas del ensayo cruzado: el efecto secuencia y el efecto periodo.

Por eso, además de analizar los efectos finales de las dos intervenciones en estudio, debemos ampliar el análisis estadístico de los datos para que no se nos cruce ningún cable y demos por buena una diferencia en tamaño de efecto que, en realidad, pueda deberse a un defecto metodológico de este tipo de ensayos.

Este análisis estadístico es un poco laborioso, así que lo vamos a ver con un ejemplo totalmente ficticio.

cruzados_tabla1Supongamos que queremos probar dos hipotensores que vamos a llamar A y B para no rompernos mucho la cabeza. El ejemplo lo vamos a hacer con 10 pacientes en aras de la simplicidad, pero imaginaos que son muchos más. En la primera tabla vemos representados los resultados principales del ensayo. Hemos recogido la presión arterial sistólica (TA) antes de empezar el estudio, al final de cada periodo y durante el periodo de lavado del ensayo. Como es lógico, recogemos también qué fármaco ha recibido cada participante durante cada periodo.

Lo primero que se nos ocurre es comparar las diferencias de TA entre los dos fármacos. Para eso necesitamos extraer los datos y reordenarlos. Con ellos hemos construido la segunda tabla. Si os molestáis en calcular, la media (m) de TA después de recibir A es de 118,5 mmHg, con una cruzados_tabla2desviación estándar (s) de 16 mmHg. Los valores que corresponden para B son una m=144,5 y una s=7,24. Para saber si estas diferencias son significativas debemos hacer un contraste de hipótesis, estableciendo la hipótesis nula (H0) de igualdad de efectos. Vamos a suponer que la variable sigue una distribución normal, que las varianzas son iguales y que la muestra fuese mucho más grande para poder emplear el test de la t de Student para datos pareados. Si calculáis el valor de t para 9 grados de libertad vale -5,18, lo que se corresponde con una p = 0,0005. Al ser p<0,05 rechazamos la hipótesis nula y concluimos que el fármaco A produce una mayor reducción de la TA que el fármaco B.

Y aquí terminaría el análisis si se tratase de un ensayo en paralelo, pero en nuestro caso debemos hacer alguna comprobación más para estar seguros de que no se nos cruza ningún cable por culpa de las debilidades del ensayo cruzado.

En primer lugar, comprobaremos que el efecto de las intervenciones es de corta duración y no existe un efecto residual de la primera intervención cuando comienza la segunda. Si no existe efecto residual, la TA al final del periodo de lavado debería ser similar a la TA basal, antes de cualquier intervención. La TA basal tiene una m=162,9 mmHg, con una s=14,81. Por su parte, los valores al final del periodo de lavado son de 156,6 y 23,14 mmHg, respectivamente. Si hacemos el contraste correspondiente encontraremos un valor de t=0,81, con una p=0,43. No podemos rechazar la H0 de igualdad, así que concluimos que las TA son similares antes de la primera intervención y al final del periodo de lavado, luego no hay efecto residual.

En segundo lugar, comprobaremos que no existe un efecto periodo. Si este se produjese, el efecto al final del segundo periodo sería mayor (o menor) que al final del primero. Al final del primer periodo encontramos una TA m=131,4 mmHg con una s=14,44 mmHg. Al final del segundo los valores son de 131,6 y 21,77 mmHg, respectivamente. Al hacer el contraste encontramos un valor de t=-0,02, con una p=0,98. Conclusión: no rechazamos la H0 de igualdad y concluimos que no existen pruebas de un efecto periodo en el ensayo.

Por último, vamos a investigar si pudo haber un efecto secuencia. Si esto se hubiese producido (hubiese interacción entre los dos fármacos de intervención), el efecto de cada una de las intervenciones sería diferente según el orden en que las hubiésemos llevado a cabo en cada paciente. Para ello calcularemos la media de descenso de TA en todos los pacientes al emplear la secuencia AB y la compararemos con la hallada al utilizar la secuencia BA. Los datos para la secuencia AB son m=-26,2 mmHg y s=11 mmHg. Para la secuencia BA son de -25,8 y 21,22 mmHg, respectivamente. El valor de la t de Student que encontramos si hacemos el test es de -0,04, al cual le corresponde un valor de p=0,96. Una vez más, no podemos rechazar la H0 de igualdad y concluimos que no existió efecto secuencia.

Y con esto vamos a dar por finalizado el análisis. La conclusión final es que existe una diferencia estadísticamente significativa en la potencia hipotensora de los dos fármacos a favor de A, no encontrándose signos que sugieran efectos residuales de una intervención sobre otra, efecto periodo ni efecto secuencia.

Recordad que los datos son ficticios y que hemos asumido normalidad e igualdad de varianzas con fines didácticos. Además, como ya comentamos al principio, no sería del todo correcto emplear la t de Student con una muestra tan pequeña, aunque me he tomado esta pequeña licencia para poder explicar el ejemplo con más sencillez. De todas formas, teniendo un programa informático cuesta lo mismo hacer una t de Student que un test de Wilcoxon.

Y esto es todo. Como veis, el análisis estadístico de los resultados de un ensayo cruzado es bastante más laborioso que el del ensayo en paralelo. De todas formas, aquí hemos visto el ejemplo más sencillo, cuando no hay interacción entre las dos intervenciones. Y es que cuando existe interacción el análisis no termina aquí y son necesarias todavía más comprobaciones. Pero esa es otra historia…