Ciencia sin seso… locura doble

Píldoras sobre medicina basada en pruebas

Busca siempre un intervalo, pero que sea de confianza

This post is also available in: Inglés

image_pdf

El intervalo de confianza es una de esas herramientas que nos permiten conservar uno de nuestros vicios más persistentes: querer sacar conclusiones acerca de muchos con datos obtenidos de unos pocos.

Cuando queremos conocer una característica de un determinado grupo de pacientes es frecuente que no podamos estudiarla en todos los sujetos que nos interesan, por lo que tenemos que resignarnos a seleccionar una muestra dentro de esa población y realizar las mediciones que nos parezcan oportunas. El problema entonces es evidente: sabremos cuál es el valor en nuestra muestra pero, ¿cuál es el valor en la población global? ¿no hay forma de saberlo sin estudiar a toda la población?

La mala noticia es que la única manera de saber el valor con exactitud en la población es medir la variable en todos los sujetos. La buena noticia es que podemos estimar el valor en la población a partir del que obtuvimos en la muestra, aunque dentro de unos límites de incertidumbre, que son los que marca el intervalo de confianza.

Así, el intervalo de confianza, que se calcula a partir de los resultados de la muestra, nos dice entre que límites se encuentra el valor de la variable en la población de la que procede la muestra, siempre con cierto grado de error o incertidumbre, que por convenio suele situarse en el 95%.

En la práctica, el intervalo de confianza con una probabilidad del 95% (el que más se usa habitualmente) se calcula de la forma siguiente:

            IC 95% = V ± 1,96 SE

Donde V representa el parámetro que medimos (una media, una proporción, etc) y ±1,96 corresponde al rango alrededor de la media que incluye el 95% de la población en una distribución normal estándar. SE representa el error estándar, un término bastante más antipático de explicar, que corresponde a la desviación típica de la distribución de los valores de la variable que obtendríamos si repitiésemos el estudio muchas veces. Pero no os preocupéis por todo este galimatías, los programas de estadística lo hacen todo ellos solos. Lo único que tenemos que saber es que el intervalo de confianza incluye el verdadero valor de la población con la probabilidad especificada (la realidad es un poco más compleja, pero dejémoslo así).

Una reflexión final antes de cerrar este tema. Además del grado de incertidumbre, el intervalo de confianza nos informa sobre la precisión del estudio. Cuanto menor sea el intervalo, más precisión habremos conseguido, y si el intervalo es demasiado amplio es posible que el resultado no nos valga para nada, aunque tenga significación estadística. Este tipo de información es algo que no nos da la p. Entonces, ¿para qué sirve la p?. La p sirve para otras cosas, pero esa es otra historia…

3 Responder a 'Busca siempre un intervalo, pero que sea de confianza'

  1. Samuel dice:

    Gracias por explicar esto de forma tan simple y eficiente

  2. J dice:

    Hola, me ha gustado mucho tú sitio, pero no entiendo esto:

    “Cuanto menor sea el intervalo, más precisión habremos conseguido, y si el intervalo es demasiado amplio es posible que el resultado no nos valga para nada, aunque tenga significación estadística.”

    A ver si entendí algo, si un estudio me dice que la tasa de exito de curación de un tratamiento es de 79.3% (CI: 74.1-85.0%) ¿Significa que tiene menor o más precisión que un estudio con un CI de 95%? Gracias.

    • Manuel Molina dice:

      Gracias por tu pregunta. Cuando tú haces un ensayo lo haces con una muestra de una población. Tú obtienes un resultado en tu muestra, pero te interesa saber el resultado en la población inaccesible. Para eso sirve el intervalo. El nivel de confianza es el de probabilidad que elijas. Un intercvalo del 95% quiere decir que si repites el experimento cien veces, el resultado estará incluido en el intervalo en 095 de las veces. Te da idea de entre qué valores está el de la población. La precisión la marca la amplitud del intervalo. Supón que tomo una muestra para saber el nivel de presión sistólica de mi població. Si el resultado es un intervalo de 110 a 130 mmHg, se con bastante exactituds por donde está el nivel de presión de mi población, que no tengo forma de determinar con exactitud. Pero si el intervalo es de 60 a 180 mmHg, el valor de la población puede estar en cualquier punto del intervalo, así que es mucho menos preciso: me sirve de poco saber que el valor medio de presión arterial puede ser cualquier valor entre 60 y 180 mmHg. Espero haberte aclarado la pregunta.
      Manolo

Deja un comentario

A %d blogueros les gusta esto: