Ciencia sin seso… locura doble

Píldoras sobre medicina basada en pruebas

Guardado por elSin categoría Categora
image_pdf

Otra de monedas

Pocas cosas son inmutables en este mundo. Todo cambia y todo es relativo. Incluso la probabilidad de un suceso puede ser algo cambiante. Me explico.

Habitualmente vemos el mundo de la probabilidad desde un punto de vista frecuentista. Si tenemos un dado con seis caras asumimos que cada cara tiene una probabilidad de aparecer de una entre seis cada vez que lancemos el dado (suponiendo que el dado es legal y todas las caras tienen la misma probabilidad de salir).

Si tenemos dudas sobre si el dado es legal, lo que hacemos es tirar el dado un número enorme de veces hasta que somos capaces de calcular cuántas veces es predecible que aparezca cada cara, calculando así su probabilidad. Pero, en ambos casos, una vez que obtenemos el dato, ya no nos movemos de ahí. Pase lo que pase, seguiremos afirmando que la probabilidad de sacar un cinco en una tirada es un sexto.

Pero a veces la probabilidad puede cambiar y volverse diferente de la que preestablecimos en un comienzo. Una probabilidad inicial puede cambiar si inyectamos información nueva en el sistema y puede depender de eventos que vayan sucediendo a lo largo del tiempo. Esto da origen al punto de vista estadístico bayesiano, basado en gran parte en la regla de Bayes, en el que la probabilidad de un evento puede ir actualizándose a lo largo del tiempo. Pongamos un ejemplo.

Supongamos, como no, que tenemos tres monedas. Pero son tres monedas muy particulares, ya que solo una de ellas es legal (cara y cruz, CZ). De las otras dos, una tiene dos caras (CC) y la otra, dos cruces (ZZ). Ahora metemos las tres monedas en una bolsa y sacamos una de ellas sin mirar. La pregunta es: ¿cuál es la probabilidad de haber sacado la moneda con dos caras?.

¡Qué sencillo!, pensaréis la mayoría. Es el típico caso de eventos favorables dividido por eventos posibles. Como hay un evento favorable (CC) y tres posibles (CC, ZZ y CZ), la probabilidad es de un tercio. Tenemos una probabilidad del 33% de haber sacado la moneda con dos caras.

Pero, ¿qué pasa si os digo que lanzo la moneda al aire y me sale cara?. ¿Sigo teniendo la misma probabilidad de un tercio de tener la moneda con dos caras en la mano?. La respuesta, evidentemente, es no. ¿Y cuál es ahora la probabilidad de tener en la mano la moneda con dos caras?. Para calcularlo no nos valen los eventos favorables y los posibles, sino que tenemos que recurrir a la regla de Bayes. Vamos a razonarla.

La probabilidad de que se produzcan dos sucesos independientes A y B es igual a la probabilidad de A por la probabilidad de B. En el caso de que los dos sucesos sean dependientes, la probabilidad de A y B sería igual a la probabilidad de A por la probabilidad de B una vez que se ha producido A:

P(A y B) = P(A) x P(B|A)

Llevándolo al ejemplo de nuestras monedas, la probabilidad de que salga cara y de que tengamos la moneda de dos caras podemos expresarla como

P(C y CC) = P(C) x P(CC|C) (probabilidad de obtener cara por probabilidad de tener la moneda CC una vez que sale cara).

Pero también lo podemos expresar al revés:

P(C y CC) = P(CC) x P(C|CC) (probabilidad de tener la moneda CC por la probabilidad de sacar cara si tenemos la moneda CC).

Así que podemos igualar las dos expresiones y obtener nuestra buscada regla de Bayes:

P(C) x P(CC|C) = P(CC) x P(C|CC)

P(CC|C) = [P(CC) x P(C|CC)] / P(C)

Vamos a calcular nuestra probabilidad de tener la moneda CC si hemos sacado cara. Sabemos que P(CC) = 1/3. P(C|CC) = 1: si tenemos la moneda con dos caras la posibilidad de que salga cara es del 100%. ¿Cuál es la P(C)?.

La probabilidad de sacar cara será igual a la probabilidad de haber sacado de la bolsa la moneda ZZ por la posibilidad de tener cara con ZZ más la probabilidad de haber sacado CC por la probabilidad de cara con CC más la probabilidad de haber sacado la moneda legal por la probabilidad de cara con esta moneda:

P(C) = (1/3 x 0) + (1/3 x 1/2) + (1/3 x 1) = 1/2

Luego, P(CC|C) = [1 x 1/3] / 1/2 = 2/3 = 0,66

Esto quiere decir que si hemos tirado la moneda y ha salido cara, la probabilidad de que tengamos la moneda con dos caras sube del 33% al 66% (y la de tener la moneda con dos cruces baja del 33% al 0).

¿Veis cómo se ha actualizado la probabilidad?. ¿Qué pasaría si volvemos a lanzar la moneda y vuelve a salir cara?. ¿Cuál sería entonces la probabilidad de tener la moneda con dos caras?. Vamos a calcularlo siguiendo el mismo razonamiento:

P(CC|C) = [P(CC) x P(C|CC)] / P(C)

En este caso, P(CC) ya no vale 1/3, sino 2/3. P(C|CC) sigue valiendo 1. Por último P(C) también se ha modificado: ya hemos descartado la posibilidad de haber sacado la moneda con dos cruces, así que la probabilidad de sacar cara en el segundo lanzamiento es la probabilidad de tener CC por la probabilidad de cara con CC más la probabilidad de tener la moneda legal por la probabilidad de cara con esta moneda:

P(C) = (2/3 x 1) + (1/3 x 1/2) = 5/6

Así que P(CC|C) = (2/3 x 1) / (5/6) = 4/5 = 0,8

Si en el segundo lanzamiento volvemos a sacar cara, la probabilidad de que estemos lanzando la moneda con dos caras sube del 66% al 80%. Lógicamente, si seguimos repitiendo el experimento, cuántas más caras saquemos, más seguros estaremos de que tenemos la moneda con dos caras, aunque nunca tendremos una certeza total. Por supuesto, el experimento termina en el momento en que sacamos cruz, en el que la probabilidad de la moneda CC bajaría automáticamente a cero (y la de la moneda legal a 100%).

Como veis, la probabilidad no es tan inmutable como parece.

Y aquí dejamos de jugar con monedas por hoy. Solo deciros que, aunque sea menos conocido que el enfoque frecuentista, esto de la estadística bayesiana da para mucho. Existen manuales, programas informáticos especiales y métodos de análisis de resultados que incorporan la información que se deriva del estudio. Pero esa es otra historia…

El cocinero y su pastel

Saber cocinar es una ventaja. ¡Qué bien queda uno cuando tiene invitados y sabe cocinar como es debido!. Te pasas dos o tres horas comprando los ingredientes, te dejas un dineral y te tiras otras dos o tres horas en la cocina… y, al final, resulta que el plato estupendo que estabas preparando te queda hecho una ruina.

Y esto le pasa hasta a los mejores cocineros. Nunca podemos estar seguros de que el plato nos vaya a quedar bien, aunque lo hayamos preparado antes muchas veces. Así que entenderéis el problema que tiene mi primo.

Resulta que va a dar una fiesta y a él le ha tocado hacer el postre. Sabe hacer un pastel bastante rico, pero solo le sale realmente bueno la mitad de las veces que lo intenta. Así que está muy preocupado por hacer el ridículo en la fiesta, como es bien comprensible. Claro que mi primo es muy listo y ha pensado que si hace más de un pastel, alguno le tiene que quedar bueno. Pero, ¿cuántos tiene que hacer para tener, por lo menos, uno bueno?.

El problema de esta pregunta es que no tiene una respuesta exacta. Cuantos más pasteles haga, más probable que alguno salga bueno. Pero claro, puede hacer doscientos y tener la mala suerte de que todos sean malos. Pero no desesperéis: aunque no podemos dar una cifra con seguridad absoluta, si podemos medir la probabilidad de quedar bien con un número determinado de pasteles. Veámoslo.

Vamos a imaginar la distribución de probabilidad, que no es más que el conjunto de situaciones que incluyen todas las situaciones que pueden ocurrir. Por ejemplo, si mi primo hace un pastel, éste puede salir bueno (B) o malo (M), ambos con una probabilidad de 0,5. Podéis verlo representado en el gráfico A. Tendrá un 50% de probabilidades de éxito.

Si hace dos pasteles puede ocurrir que le salgan bien uno, dos o ninguno. Las combinaciones posibles serán: BB, BM, MB, MM. La probabilidad de tener uno bueno es de 0,5 y la de tener dos 0,25, con lo que la probabilidad de tener al menos uno bueno es de 0,75 o 75% (3/4). Lo representamos en el gráfico B Vemos que las opciones mejoran, pero todavía queda mucho margen para el fracaso.binomial

Si hace tres pasteles las opciones son las siguientes: BBB, BBM, BMB, BMM, MBB, MBM, MMB y MMM. Esto mejora, ya tenemos un 87,5% (1/8) de que al menos un pastel salga bien. Lo representamos en el gráfico C.

¿Y si hace cuatro, o cinco, o…?. El asunto se convierte en un auténtico coñazo. Cada vez es más difícil imaginar las combinaciones posibles. ¿Y qué hacemos?. Pues pensar un poco.

Si nos fijamos en los gráficos, las barras representan los elementos discretos de probabilidad de cada uno de los eventos posibles. Según aumenta el número de posibilidades y aumenta el número de barras verticales, la distribución de las barras comienza a adoptar una forma acampanada, ajustándose a una distribución de probabilidad conocida, la distribución binomial.

Las personas que entienden de estas cosas, llaman experimentos de Bernouilli a aquellos que tienen solo dos soluciones posibles (son dicotómicos), como tirar una moneda (cara o cruz) o nuestro pastel (bueno o malo). Pues bien, la distribución binomial mide el número de éxitos (k) de una serie de experimentos de Bernouilli (n) con una determinada probabilidad de ocurrencia de éxito de cada suceso (p).

En nuestro caso la probabilidad es p=0,5 y podemos calcular la probabilidad de tener éxito repitiendo el experimento (cocinando pasteles) según la siguiente fórmula:

\fn_jvn P(k\ aciertos\ en\ n\ intentos)= \binom{n}{k} p^{k} (1-p)^{n-k}

Si sustituimos p por 0,5 (la probabilidad de que el pastel salga bueno), podemos ir jugando con los valores de n para obtener, al menos, un pastel bueno (k≥1).

Si hacemos cuatro pasteles, la probabilidad de tener al menos uno bueno es de 93,75% y si hacemos cinco esta probabilidad sube a 96,87%, un valor de probabilidad razonable para lo que estamos buscando. Yo creo que haciendo cinco pasteles es muy difícil que a mi primo se le arruine su fiesta.

También podríamos despejar el valor de la probabilidad y calcularlo al revés: dado un valor de P(k de n) obtener el número de intentos necesarios. Otra cosa que se puede hacer es calcular todas estas cosas sin utilizar la fórmula, sino usar cualquiera de las calculadoras de probabilidad disponibles en Internet.

Y aquí se acaba esta entrada tan golosa. Existen, como podéis imaginar, más tipos de distribuciones de probabilidad, tanto discretas como esta distribución binomial como continúas como la distribución normal, la más famosa de todas. Pero esa es otra historia…