Ciencia sin seso… locura doble

Píldoras sobre medicina basada en pruebas

Rey de reyes

This post is also available in: Inglés

image_pdf

No cabe duda de que a la hora de realizar un trabajo de investigación en biomedicina podemos elegir entre un gran número de diseños posibles, todos ellos con sus ventajas e inconvenientes. Pero en esta corte tan diversa y poblada, entre malabaristas, sabios, jardineros y flautistas púrpuras, reina por encima de todos el verdadero Rey Carmesí de la epidemiología: el ensayo clínico aleatorizado.

El ensayo clínico es un tipo de diseño analítico y experimental en el que se selecciona una muestra de una población y se divide al azar en dos grupos. Uno de los grupos (grupo de intervención) sufre la intervención que queremos estudiar, mientras que el otro (grupo de control) nos sirve de referencia para comparar los resultados. Tras un periodo de seguimiento determinado se analizan los resultados y se comparan las diferencias entre los dos grupos.

Como puede entenderse por su diseño, los ensayos clínicos son siempre prospectivos. Además, es el diseño más adecuado para valorar la eficacia de cualquier intervención en medicina y es el que proporciona una evidencia de mayor calidad para demostrar la relación de causalidad entre la intervención y los resultados observados.

Pero para disfrutar de todos estos beneficios es necesario ser escrupuloso en el planteamiento y metodología de los ensayos. Existen listas de verificación publicadas por sabios que entienden mucho de estos temas, como es el caso de la lista CONSORT, que nos pueden ayudar a valorar la calidad del diseño del ensayo. Pero entre todos estos aspectos, reflexionemos un poco sobre aquellos que son cruciales para la validez del ensayo clínico.

Todo empieza con una laguna de conocimiento que nos lleva a formular una pregunta clínica estructurada. El único objetivo del ensayo debe ser responder a esta pregunta y basta con que se responda de forma adecuada a una sola pregunta. Desconfiad de los ensayos clínicos que tratan de responder a muchas preguntas, ya que, en muchas ocasiones, al final no responden bien a ninguna. Además, el planteamiento debe basarse en lo que los inventores de jerga metodológica llaman el principio de incertidumbre, que no quiere decir más que, en el fondo de nuestro corazón, desconocemos de verdad cuál de las dos intervenciones es más beneficiosa para el paciente (habría que ser un poco perro desde el punto de vista ético para realizar una comparación si ya sabemos con seguridad cuál de las dos intervenciones es mejor). Es curioso en este sentido cómo los ensayos patrocinados por la industria farmacéutica tienen más tendencia a incumplir el principio de incertidumbre, ya que tienen preferencia por comparar con placebo o con “no intervención” para poder demostrar con más facilidad la eficacia de sus productos.

A continuación debemos elegir cuidadosamente la muestra sobre la que realizaremos el ensayo. Idealmente, todos los miembros de la población deberían tener la misma probabilidad no solo de ser elegidos, sino también de acabar en cualquiera de las dos ramas del ensayo. Aquí nos encontramos con un pequeño dilema. Si somos muy estrictos con los criterios de inclusión y exclusión la muestra será muy homogénea y la validez interna del estudio saldrá fortalecida, pero será más difícil extender los resultados a la población general (esta es la actitud explicativa de selección de la muestra). Por otra parte, si no somos tan rígidos los resultados se parecerán más a los de la población general, pero puede verse comprometida la validez interna del estudio (esta es la actitud pragmática).

La aleatorización (¿quién ha dicho ramdomización?) es uno de los puntos clave del ensayo clínico. Es la que nos asegura que podemos comparar los dos grupos, ya que distribuye por igual las variables conocidas y, más importante, también las desconocidas entre los dos grupos. Pero no nos relajemos demasiado: este reparto no está en absoluto garantizado, solo es más probable que ocurra si aleatorizamos de forma correcta, así que siempre deberemos comprobar la homogeneidad de los dos grupos, sobre todo con muestras pequeñas.

Además, la aleatorización nos permite realizar de forma adecuada el enmascaramiento, con lo que realizamos una medición no sesgada de la variable de respuesta. Estos resultados del grupo de intervención los podemos comparar con los del grupo control de tres formas. Una de ellas es comparar con un placebo. El placebo debe ser un preparado de características físicas indistinguibles del fármaco de intervención pero sin sus efectos farmacológicos. Esto sirve para controlar el efecto placebo (que depende de la personalidad del paciente, de sus sentimientos hacia a la intervención, de su cariño por el equipo investigador, etc), pero también los efectos secundarios que son debidos a la intervención y no al efecto farmacológico (pensemos, por ejemplo, en el porcentaje de infecciones locales en un ensayo con medicación administrada por vía intramuscular).

La otra forma de comparar es con el tratamiento aceptado como más eficaz hasta el momento. Si existe un tratamiento que funciona, lo lógico (y más ético) es que lo usemos para investigar si el nuevo aporta beneficios. También suele ser el método de comparación habitual en los estudios de equivalencia o de no-inferioridad. Por último, la tercera posibilidad es comparar con la no intervención, aunque en realidad esto es una forma rebuscada de decir que solo se le aplican los cuidados habituales que recibiría cualquier paciente en su situación clínica.

Es imprescindible que todos los participantes en el ensayo sean sometidos a la misma pauta de seguimiento, que debe ser lo suficientemente prolongado como para permitir que se produzca la respuesta esperada. Deben detallarse y analizarse todas las pérdidas que se produzcan durante el seguimiento, ya que pueden comprometer la validez y la potencia del estudio para detectar diferencias significativas. ¿Y qué hacemos con los que se pierden o acaban en una rama diferente a la asignada?. Si son muchos, lo más razonable puede ser rechazar el estudio. Otra posibilidad es excluirlos y hacer como si no hubiesen existido nunca, pero podemos sesgar los resultados del ensayo. Una tercera posibilidad es incluirlos en el análisis en la rama del ensayo en la que han participado (siempre hay alguno que se confunde y se toma lo que no le toca), lo que se conoce como análisis por tratamiento o análisis por protocolo. Y la cuarta, y última, opción que tenemos es analizarlos en la rama que se les asignó inicialmente con independencia de lo que hayan hecho durante el estudio. Esto se denomina análisis por intención de tratar, y es la única de las cuatro posibilidades que nos permite conservar todos los beneficios que previamente nos había proporcionado la aleatorización.

Como fase final, nos quedaría el análisis y comparación de los datos para extraer las conclusiones del ensayo, utilizando para ello las medidas de asociación y medidas de impacto oportunas, lo que constituye toda la metodología de lectura crítica de trabajos científicos.

Acabo ya. La verdad es que esta entrada me ha quedado un poco larga (y espero que no demasiado coñazo), pero es que el Rey se lo merece. De todas formas, si pensáis que está todo dicho sobre ensayos clínicos no tenéis ni idea de todo lo que queda por decir sobre tipos de ensayos, tipos de muestreos, de aleatorización, etc, etc, etc. Pero esa es otra historia…

Deja un comentario

A %d blogueros les gusta esto: