Ciencia sin seso… locura doble

Píldoras sobre medicina basada en pruebas

Entradas etiquetadasCurva ROC
image_pdf

Hay que saber lo que se pide

A diario encontramos artículos que nos muestran nuevas pruebas diagnósticas que parecen haber sido diseñadas para solucionar todos nuestros problemas. Pero no debemos caer en la tentación de hacer caso a todo lo que leamos sin recapacitar antes un poco en lo que hemos leído. Al fin y al cabo, si hiciésemos caso a todo lo que leemos estaríamos hinchados de beber Coca-Cola.

Ya sabemos que una prueba diagnóstica no nos va a decir si una persona está o no enferma. Su resultado únicamente nos permitirá aumentar o disminuir la probabilidad de que el individuo esté enfermo o no, de forma que nosotros nos atreveremos a confirmar o descartar el diagnóstico, pero siempre con cierto grado de incertidumbre. Cualquiera tiene cierto riesgo de padecer cualquier enfermedad, que no es más que la prevalencia de la enfermedad en la población general. Pero si, además de pertenecer a la población, uno tiene la desgracia de tener síntomas, esa probabilidad irá aumentando hasta alcanzar un primer umbral en el que se justifique realizar pruebas diagnósticas. La utilidad de la prueba diagnóstica estará en su capacidad para disminuir la probabilidad por debajo de este umbral (y descartar el diagnóstico) o, por el contrario, en aumentarla hasta el umbral en el que se justifique iniciar el tratamiento. Claro que a veces la prueba nos deja a medio camino y tenemos que hacer pruebas adicionales antes de confirmar el diagnóstico con la seguridad suficiente como para comenzar el tratamiento.

Los estudios de pruebas diagnósticas deben proporcionarnos información sobre la capacidad de una prueba para producir los mismos resultados cuando se realiza en condiciones similares (fiabilidad) y sobre la exactitud con la que las mediciones reflejan aquello que miden (validez). Pero, además, deben darnos datos sobre su capacidad discriminatoria (sensibilidad y especificidad), su rendimiento clínico (valor predictivo positivo y valor predictivo negativo) y sobre otros aspectos que nos permitan valorar si nos va a merecer la pena practicarla en nuestros pacientes. Y para comprobar si un estudio nos proporciona la información adecuada tenemos que hacer una lectura crítica basada en nuestros tres pilares: validez, importancia y aplicabilidad.

Comencemos por la VALIDEZ. Lo primero será hacernos unas preguntas básicas de eliminación o criterios primarios sobre el estudio. Si la respuesta  a estas preguntas es no, probablemente lo mejor que podamos hacer es usar el artículo para envolver el bocadillo de media mañana.

¿Se ha comparado la prueba diagnóstica de forma ciega e independiente con un patrón de referencia adecuado?. Hay que revisar que el resultado de la prueba de referencia no se interprete de forma diferente según el resultado de la prueba de estudio, ya que caeríamos en un sesgo de incorporación, que podría invalidar los resultados. Otro problema que puede surgir es que el patrón de referencia tenga muchos resultados poco concluyentes. Si cometemos el error de excluir estos casos dudosos incurriremos en un sesgo de exclusión de indeterminados que, además de sobrestimar la sensibilidad y la especificidad de la prueba, comprometería la validez externa del estudio, que solo sería aplicable a los pacientes con resultado no dudoso.

¿Los pacientes abarcan un espectro similar al que nos vamos a encontrar en nuestra práctica?. Deben estar claros los criterios de inclusión del estudio, en el que deben participar sanos y enfermos con distinta gravedad o evolución de la enfermedad. Como ya sabemos, la prevalencia influye en el rendimiento clínico de la prueba, con lo que si la validamos, por ejemplo, en un centro terciario (estadísticamente la probabilidad de estar enfermo será mayor) puede sobrestimarse su capacidad diagnóstica si va a utilizarse en un centro de Atención Primaria o en población general (en el que la proporción de enfermos será menor).

Llegados a este punto, si creemos que merece la pena seguir leyendo, pasaremos a los criterios secundarios, que son aquellos que aportan un valor añadido al diseño del estudio. Otra pregunta que debemos hacernos es: ¿influyeron los resultados de la prueba de estudio para decidir si se hacía la de referencia?. Hay que comprobar que no se haya producido un sesgo de secuencia o sesgo de verificación diagnóstica, mediante el cual excluimos a los que tienen la prueba negativa. Aunque esto es habitual en la práctica corriente (empezamos por pruebas sencillas y solo hacemos las caras o las invasoras en los casos positivos), el hacerlo en un estudio de pruebas diagnósticas compromete la validez de los resultados. Ambas pruebas deben hacerse de forma independiente y ciega, de forma que la subjetividad del observador no influya en los resultados (sesgo de revisión o sesgo de valoración ciega). Por último, ¿se describe el método con el detalle suficiente para permitir su reproducción?. Debe quedar claro qué se ha considerado normal y anormal y cuáles han sido los criterios para definir la normalidad y la forma de interpretar los resultados de la prueba.

Una vez analizada la validez interna del estudio pasaremos a considerar la IMPORTANCIA de los datos presentados. El objetivo de un estudio de diagnóstico es determinar la capacidad de una prueba para clasificar correctamente a los individuos según la presencia o ausencia de enfermedad. En realidad, y para ser más exactos, queremos saber cómo aumenta la probabilidad de estar enfermo tras el resultado de la prueba (probabilidad postprueba). Es, por tanto, esencial que el estudio nos informe acerca de la dirección y magnitud de este cambio (preprueba/postprueba), que sabemos depende de las características de la prueba y, en gran medida, de la prevalencia o probabilidad preprueba.

¿Nos presenta el trabajo las razones de verosimilitud o es posible calcularlas a partir de los datos?. Este dato es fundamental, ya que sin él no podemos calcular el impacto clínico de la prueba de estudio. Hay que tener especial precaución con las pruebas de resultado cuantitativo en las que es el investigador el que establece un punto de corte de normalidad. Cuando se utilizan curvas ROC es frecuente desplazar el punto de corte para favorecer la sensibilidad o la especificidad de la prueba, pero tenemos que valorar siempre cómo afecta esta medida a la validez externa del estudio, ya que puede limitar su aplicabilidad a un grupo determinado de pacientes.

¿Son fiables los resultados?. Habrá que determinar si los resultados son reproducibles y cómo pueden verse afectados por variaciones entre diferentes observadores o al repetir la prueba de forma sucesiva. Pero no solo hay que valorar la fiabilidad, sino también cuán precisos son los resultados. El estudio se hace sobre una muestra de pacientes, pero debe proporcionar una estimación de sus valores en la población, por lo que los resultados deben expresarse con sus correspondientes intervalos de confianza.

El tercer pilar de la lectura critica es el de la APLICABILIDAD o validez externa, que nos ayudará a determinar si los resultados son útiles para nuestros pacientes. En este sentido, debemos hacernos tres preguntas. ¿Disponemos de esta prueba y es factible realizarla en nuestros pacientes?. Si no disponemos de la prueba lo único que habremos conseguido leyendo el estudio es aumentar nuestros vastos conocimientos. Pero si disponemos de ella debemos preguntarnos si nuestros pacientes cumplirían los criterios de inclusión y exclusión del estudio y, en caso de que no los cumplan, pensar cómo pueden afectar estas diferencias la aplicabilidad de la prueba.

La segunda pregunta es si conocemos la probabilidad preprueba de nuestros pacientes. Si nuestra prevalencia es muy diferente de la del estudio se puede modificar la utilidad real de la prueba. Una solución puede ser hacer un análisis de sensibilidad valorando cómo se modificarían los resultados del estudio estudiando varios valores de probabilidad pre y postprueba que sean clínicamente razonables.

Por último, deberíamos hacernos la pregunta más importante: ¿la probabilidad postprueba puede hacer cambiar nuestra actitud terapéutica y servir de ayuda para el paciente?. Por ejemplo, si la probabilidad preprueba es muy baja, probablemente la probabilidad postprueba sea también muy baja y no alcanzará el umbral de justificación terapéutica, con lo que igual no merece la pena gastar dinero y esfuerzos con esa prueba. Por el contrario, si laprobabilidad preprueba es muy alta, en algunos casos merecerá la pena tratar sin hacer ninguna prueba, salvo que el tratamiento sea muy costoso o peligroso. Como siempre, en el medio estará la virtud y será en esas zonas intermedias donde más nos podamos beneficiar del uso de la prueba diagnóstica en cuestión. En cualquier caso, no nos olvidemos nunca de nuestro jefe (me refiero al paciente, no al otro): no hay que contentarse solo con estudiar la eficacia o el coste-efectividad, sino que debemos considerar también los riesgos, molestias y preferencias del paciente, así como las consecuencias que le puede acarrear la realización o no de la prueba diagnóstica.

Si me permitís un consejo, cuando estéis valorando un trabajo sobre pruebas diagnósticas os recomiendo el uso de las plantillas CASPe, que podéis descargaros de su página web. Os ayudarán a hacer la lectura critica de una manera sistemática y sencilla.

Para terminar, comentaros que todo lo dicho hasta ahora vale para los trabajos específicos de pruebas diagnósticas. Sin embargo, la valoración de pruebas diagnósticas puede formar parte de estudios observacionales como los de cohortes o los de casos y controles, que pueden tener alguna peculiaridad en la secuencia de realización y en los criterios de validación de la prueba de estudio y del patrón de referencia, pero esa es otra historia…

El dilema del vigilante

¿Os acordáis del problema de mi cuñado que no sabía que vigilante contratar?. Porque todavía no hemos respondido cuál de los dos vigilantes le aconsejamos que contrate, el que para a casi todo el mundo para mirarle el bolso y ofende a mucha gente que no roba nada, o el que no para a casi nadie pero tampoco falla con el que para, aunque se escapen muchos ladrones.

¿Y cuál creéis que es mejor de los dos?. La respuesta es muy sencilla: depende. Los que hayáis leído la entrada donde se planteaba este problema ya os habréis dado cuenta de que el primer vigilante (el que registra a muchos) es, sin ánimo de ofender, el sensible, mientras que el segundo es el específico. ¿Qué nos interesa más, que el vigilante sea sensible o específico?. Pues depende, por ejemplo, de donde tengamos el comercio. Si lo hemos abierto en un barrio de gente bien, no nos interesará mucho el primero, ya que, en realidad, poca gente robará y nos interesa más no ofender a los clientes para que no se vayan. Pero si ponemos la tienda en frente de la Cueva de Alí-Babá sí que nos traerá más cuenta contratarle para que nos detecte el mayor número posible de clientes que se llevan género robado. Pero también puede depender de lo que vendamos en la tienda. Si tenemos un “todo a un euro” (o un “todo a cien” para los nostálgicos) podemos contratar al vigilante específico, aunque se nos escape alguno (total, perderemos poco dinero). Pero si vendemos joyería fina no querremos que se escape ningún ladrón y contrataremos al sensible (preferiremos que alguien inocente se moleste por ser registrado a que se nos escape uno con un diamante de los gordos).

Pues esto mismo ocurre en medicina con la elección de las pruebas diagnósticas: tendremos que decidir en cada caso si nos interesa más una sensible o una específica, porque no siempre las pruebas disponibles tienen una alta sensibilidad (S) y especificidad (E).

En general, se prefiere una prueba sensible cuando los inconvenientes de obtener falsos positivos (FP) son menores que los de los falsos negativos (FN). Por ejemplo, supongamos que vamos a vacunar a un grupo de enfermos y sabemos que la vacuna es letal en los que tienen determinado error metabólico. Es claro que nos interesará que no se escape ningún enfermo sin diagnosticar (que no haya FN), aunque no pasa nada si a algún sano le etiquetamos de tener el error metabólico (un FP): será preferible no vacunar a un sano por pensar que tiene la metabolopatía (aunque no la tenga) que cargarnos a uno con la vacuna por pensar que no la tenía. Otro ejemplo menos dramático: en medio de una epidemia nos interesará una prueba muy sensible para poder aislar al mayor número posible de enfermos. El problema aquí es el de los desgraciados sanos positivos (FP) que meteríamos con los infectados, a los cuáles haríamos un flaco favor con la maniobra. Claro que bien podríamos hacer, a todos los positivos de la primera prueba, una segunda de confirmación que sea muy específica para evitar este calvario a los FP.

Por otra parte, se prefiere una prueba específica cuando es mejor tener FN que FP, como cuando queremos estar seguros de que un enfermo realmente lo está. Imaginemos que el resultado positivo de una prueba conlleva un tratamiento consistente en una operación quirúrgica: nos convendrá bastante estar seguros de que no vamos a operar a ningún sano.

Otro ejemplo es el de las enfermedades cuyo diagnóstico puede ser muy traumático para el paciente y que encima son prácticamente incurables o no tienen tratamiento. Aquí primaremos la especificidad para no darle un disgusto innecesario a ningún sano. Por el contrario, si la enfermedad es muy grave pero tiene tratamiento, probablemente prefiramos una prueba sensible.

Hasta aquí hemos hablado de pruebas con resultado dicotómico: positivo o negativo. Pero, ¿qué pasa cuándo el resultado es cuantitativo?. Imaginemos que medimos la glucemia en ayunas. Debemos decidir hasta qué valor de glucemia consideramos normal y por encima de cuál nos parecerá patológico. Y esta es una decisión crucial, porque S y E dependerán del punto de corte que elijamos.

Para ayudarnos a elegir disponemos de la curva de características operativas para el receptor, mundialmente conocida como curva ROC (receiver operating characteristic). Representamos en ordenadas (eje y) la S y en abscisas el complementario de la E (1-E) y trazamos una curva en la que cada punto de corte representa la probabilidad de que la prueba clasifique correctamente a una pareja sano-enfermo tomada al azar. La diagonal del gráfico representaría la “curva” si la prueba no tuviese capacidad ninguna de discriminar sanos de enfermos.

Como veis en el gráfico, la curva suele tener un segmento de gran pendiente donde aumenta rápidamente la S sin que apenas varíe la E: si nos desplazamos hacia arriba podemos aumentar la S sin que prácticamente nos aumenten los FP. Pero llega un momento en que llegamos a la parte plana. Si seguimos desplazándonos hacia la derecha llegará un punto a partir del cual la S ya no aumentará más, pero comenzarán a aumentar los FP. Si nos interesa una prueba sensible, nos quedaremos en la primera parte de la curva. Si queremos especificidad tendremos que irnos más hacia la derecha. Y, por último, si no tenemos predilección por ninguna de las dos (nos preocupa igual obtener FP que FN), el mejor punto de corte será el más próximo al ángulo superior izquierdo.

Un parámetro de interés es el área bajo la curva (ABC), que nos representa la probabilidad de que la prueba diagnóstica clasifique correctamente al paciente al que se le practique. Una prueba ideal con S y E del 100% tiene un área bajo la curva de 1: siempre acierta. En clínica, una prueba cuya curva ROC tenga un ABC > 0,9 se considera muy exacta, entre 0,7-0,9 de exactitud moderada y entre 0,5-0,7 de exactitud baja. El área bajo la diagonal es de 0,5, punto por debajo del cual la prueba carece de valor diagnóstico (bueno, en realidad, como dice mi amigo el sapientísimo Escepticémico, la prueba sin valor es la de la diagonal, ya que valores por debajo se corresponden con un error de clasificación de los sanos como enfermos, y viceversa. Leed su comentario a esta entrada, que él lo explica mucho mejor).

Curiosas las curvas ROC, ¿verdad?. Pues su utilidad no se limita a la valoración de la bondad de las pruebas diagnósticas con resultado cuantitativo. Las curvas ROC sirven también para determinar la bondad del ajuste de un modelo de regresión logística para predecir resultados dicotómicos, pero esa es otra historia…