Ciencia sin seso… locura doble

Píldoras sobre medicina basada en pruebas

Entradas etiquetadasEmparejamiento
image_pdf

Una cuestión de parejas

Vimos en la entrada anterior cómo los estudios observacionales, más concretamente los estudios de cohortes y los de casos y controles, están llenos de trampas y vericuetos. Una de estas trampas es la puerta de atrás por la que se nos escapan los datos, de forma que obtenemos medidas de estimación de asociación erróneas. Esta puerta trasera son los llamados factores de confusión.

Ya sabemos que hay varias formas de controlar la confusión. Una de ellas, el emparejamiento, tiene sus peculiaridades según la empleemos con estudios de cohortes o con estudios de casos y controles.

Cuando se trata de estudios de cohortes, el emparejar por el factor de confusión nos permite obtener una medida de asociación ajustada. Esto es así porque controlamos la influencia de la variable confusora sobre la exposición y sobre el efecto. Sin embargo, lo anterior no se cumple cuando utilizamos la técnica de emparejamiento en un estudio de casos y controles. El diseño de este tipo de estudios nos impone la obligación de realizar el emparejamiento una vez que se ha producido el efecto. De esta forma, los pacientes que actúan como controles no constituyen un conjunto de individuos independientes elegidos al azar, ya que cada control fue seleccionado cumpliendo una serie de criterios determinados según el caso con el que se emparejó. Esto, lógicamente, evita que podamos seleccionar otros individuos de la población que no cumplen los criterios especificados pero que serían potencialmente incluibles en el estudio. Si nos olvidamos de este pequeño detalle y aplicamos la misma metodología de análisis que usaríamos en un estudio de cohortes incurriríamos en un sesgo de selección que invalidaría nuestros resultados. Además, aunque conseguimos forzar una distribución similar del factor de confusión, solo controlamos totalmente su influencia sobre el efecto, pero no sobre la exposición.

Así que la mentalidad del análisis varía un poco cuando valoramos los resultados de un estudio de casos y controles en los que hemos utilizado la técnica de emparejamiento para controlar factores de confusión. Mientras que en un estudio sin emparejamiento analizamos la asociación entre exposición y efecto en el grupo global, cuando hemos emparejado debemos estudiar el efecto en las parejas de caso-control.

cada oveja_casos controlesVamos a verlo continuando con el ejemplo del efecto del tabaco sobre la aparición de carcinoma laríngeo de la entrada anterior.

En la tabla superior vemos los datos globales del estudio. Si analizamos los datos sin tener en cuenta que hemos utilizado el emparejamiento para seleccionar los controles obtenemos una odds ratio de 2,18, como vimos en la entrada anterior. Sin embargo, sabemos que esta estimación es errónea. ¿Qué hacemos?. Considerar el efecto de las parejas, pero solo de las mal avenidas.

Vemos en la tabla inferior la distribución de las parejas en función de su exposición al tabaco. Tenemos 208 parejas en las que tanto el caso (persona con cáncer laríngeo) como el control son fumadores. Al estar los dos sometidos a la exposición no nos servirán para estimar su asociación con el efecto. Lo mismo puede decirse de las 46 parejas en las que ni el caso ni el control fuman. Las parejas que nos interesan son las 14 en las que el control fuma pero el caso no lo hace y las 62 en las que solo fuma el caso, pero no el control.

Estas parejas discordantes son las únicas que nos dan información sobre el efecto del tabaco sobre la aparición del cáncer de laringe. Si calculamos la odds ratio vemos que es de 62/14 = 4,4, una medida de asociación más fuerte que la que obtuvimos previamente y, sin duda, mucho más próxima a la realidad.

Por último, solo me resta hacer tres consideraciones antes de terminar. La primera es, aunque no creo que haga falta, recordaros que los datos son producto de mi imaginación y que el ejemplo es totalmente ficticio aunque no parezca tan estúpido como otros que inventé en otras entradas. La segunda, que estos cálculos suelen hacerse con programas informáticos, utilizando la prueba de Mantel-Haenszel o la prueba de McNemar. La tercera, comentar que en todos estos ejemplos hemos utilizado un emparejamiento con una relación 1:1 (un control por cada caso), pero esto no tiene por qué ser obligatoriamente así ya que, en algunas ocasiones, puede interesar utilizar más de un control por cada caso. Esto conlleva sus diferencias sobre la influencia del factor de confusión sobre la medida de asociación estimada y sus consideraciones a la hora de realizar el análisis. Pero esa es otra historia…

Cada oveja, con su pareja

En ocasiones, no podemos evitar que en nuestros estudios se nos metan factores de confusión, conocidos o desconocidos. Estas variables confusoras abren una puerta trasera por la que se cuelan nuestros datos, haciendo que las medidas de asociación entre exposición y efecto que estimamos mediante el estudio no se correspondan con la realidad.

En la fase de análisis suelen utilizarse técnicas como la estratificación, o modelos de regresión para medir la asociación ajustando por la variable confusora. Pero también podemos intentar prevenir la confusión en la fase de diseño. Una forma es restringiendo los criterios de inclusión según la variable de confusión. Otra estrategia consiste en seleccionar los controles para que tengan la misma distribución de la variable confusora que el grupo de intervención. Esto es lo que se conoce como emparejamiento.

cada oveja_poblacion generalSupongamos que queremos determinar el efecto del tabaco sobre la frecuencia de aparición de cáncer laríngeo, en una población con la distribución que veis en la primera tabla. Podemos ver que el 80% de los fumadores son hombres, mientras que solo el 20% de los no fumadores lo son. Nos inventamos que el riesgo de cáncer en hombres es del 2%, pero que sube hasta el 6% para los fumadores. Por su parte, el riesgo en mujeres es del 1%, llegando hasta un 3% si fuman. Así que, aunque todos doblan el riesgo si se apuntan al más antisocial de los vicios, los hombres siempre tienen el doble de riesgo que las mujeres (a igualdad de exposición al tabaco entre los dos sexos, porque los que fuman tienen seis veces más riesgo que las no fumadoras). En resumen, el sexo actúa como factor de confusión: influye sobre la probabilidad de sufrir la exposición y sobre la probabilidad de padecer el efecto, pero no forma parte de la secuencia causal entre tabaco y cáncer de laringe. Esto tendríamos que tenerlo en cuenta a la hora del análisis y calcular el riesgo relativo ajustado mediante la técnica de Mantel-Haenszel o utilizando un  modelo de regresión logística.

Pero otra posibilidad, si conocemos el factor de confusión, es intentar prevenir su efecto durante la fase de planificación del estudio. Supongamos que partimos de una cohorte de 500 fumadores, el 80% hombres y el 20% mujeres. En lugar de tomar 500 controles no fumadores al azar (solo el 20% serían hombres), incluímos en la cohorte no expuesta un no fumador por cada fumador de la cohorte expuesta y una no fumadora por cada fumadora de la cohorte expuesta. Tendremos dos cohortes con una distribución similar de la variable de confusión y, lógicamente, también similares en la distribución del resto de las variables conocidas (en caso contrario no podríamos compararlas).

¿Hemos solucionado el problema de la confusión?. Vamos a comprobarlo.

puerta_trasera_edadesVemos la tabla de contingencia de nuestro estudio con 1000 personas, puerta_trasera_edadesel 80% hombres y el 20% mujeres en los dos grupos, expuestos y no expuestos. Como sabemos el riesgo de desarrollar cáncer en función del sexo y el estado de fumador, podemos calcular el número de personas que esperamos que desarrollen cáncer a lo largo del estudio: 24 fumadores (el 6% de 400), ocho no fumadores (2% de 400), tres fumadoras (3% de 100) y una mujer no fumadora (1% de 100).

Con estos datos podemos construir las tablas de contingencia, global y estratificadas por sexos, que esperamos encontrar al finalizar el seguimiento. Si calculamos la medida de asociación (en este caso, el riesgo relativo) en hombres y mujeres por separado vemos que coincide (RR = 3). Además, es el mismo riesgo que el de la cohorte global, así que parece que hemos conseguido cerrar la puerta trasera. Ya sabemos que, en un estudio de cohortes, el emparejamiento por el factor de confusión nos permite contrarrestar su efecto.

Ahora supongamos que en lugar de un estudio de cohortes queremos realizar un estudio de casos y controles. ¿Podemos usar el emparejamiento?. Pues claro que podemos, ¿quién nos lo va a impedir?. Pero hay un pequeño problema.

Si pensamos un poco, nos daremos cuenta de que el emparejamiento con las cohortes influye tanto sobre la exposición como sobre el efecto. Sin embargo, en los estudios de casos y controles, el forzar una distribución similar del factor de confusión afecta solo a su influencia sobre el efecto y no a la que tiene sobre la exposición. Esto es así porque al homogeneizar según el factor de confusión se hace también según otros factores relacionados con él, entre otros, la propia exposición. Por este motivo, el emparejamiento no nos garantiza el cierre de la puerta trasera en los estudios de casos y controles.

¿Alguien no se lo cree?. Vamopuerta_trasera_edadess a suponer que, al finalizar el estudio de cohortes, seleccionamos 330 personas con cáncer laríngeo (80% hombres y 20% mujeres). Para hacer el estudio de casos y controles seleccionamos como controles un grupo de personas de la misma población que no tenga cáncer laríngeo (es lo que se denomina un estudio de casos y controles anidado en un estudio de cohortes).

El número de expuestos y no expuestos lo conocemos de los datos que dimos al principio de la población general, conociendo el riesgo de cáncer que se presenta según el género y la exposición al tabaco. Por otra parte, podemos también construir la tabla de los controles, ya que sabemos el porcentaje de exposición al tabaco según el sexo.

Por último, con los datos de estas tres tablas podremos construir las tablas de contingencia para el estudio global y las correspondientes a hombres y mujeres.

En este caso, la medida de asociación idónea es la odds ratio, que tiene un valor de tres para hombres y mujeres, pero que es de 2,18 para la población global del estudio. Vemos, pues, que no coinciden,puerta_trasera_edades lo que nos está diciendo que no nos hemos librado completamente del efecto de la variable de confusión aunque hayamos utilizado la técnica de emparejamiento para seleccionar el grupo control.

Entonces, ¿no puede utilizarse el emparejamiento en los estudios de casos y controles?. Pues sí, sí que se puede, aunque el análisis de los resultados para estimar la medida de asociación ajustada es un poco diferente. Pero esa es otra historia…