Ciencia sin seso… locura doble

Píldoras sobre medicina basada en pruebas

Entradas etiquetadasÍndice de fragilidad
image_pdf

La fragilidad de la emPeratriz

Una de las cosas que más me maravilla de la estadística es su aspecto de solidez, sobre todo si tenemos en cuenta que continuamente se mueve en el terreno del azar y la incertidumbre. Claro que el problema no es de la estadística como tal, sino nuestro por creer en la solidez de sus conclusiones.

El ejemplo más característico es el del contraste de hipótesis. Imaginemos que queremos estudiar el efecto de un fármaco sobre la prevención de la migraña, esa enfermedad tan frecuente después del matrimonio. Lo primero que hacemos es establecer nuestra hipótesis nula, que habitualmente dice lo contrario a lo que queremos demostrar.

En nuestro caso, la hipótesis nula dice que el fármaco es igual de eficaz que el placebo para prevenir la migraña. Hacemos nuestro ensayo aleatorizando a los sujetos a los grupos de control y de tratamiento y obtenemos nuestros resultados. Por último, hacemos el contraste de hipótesis con el estadístico adecuado y calculamos la probabilidad de que las diferencias en el número de jaquecas observadas en cada grupo se deben al azar. Este es el valor de la p, que nos indica única y exclusivamente la probabilidad de que un resultado como el observado, o aún más extremo, se deba al azar.

Si obtenemos un valor de p de 0,35 querrá decir que la probabilidad de que la diferencia no sea real (se deba al azar) es de un 35%, con lo que no podremos rechazar la hipótesis nula y concluiremos que la diferencia no es real por no ser estadísticamente significativa. Sin embargo, si el valor de p es muy bajo, sí que nos sentimos seguros para decir que existe esa diferencia. ¿Cómo de bajo?. Por convenio se suele escoger un valor de 0,05.

Así que si p < 0,05 rechazamos la hipótesis nula y decimos que la diferencia no se debe al azar y que es estadísticamente significativa. Y aquí es donde viene a cuento mi reflexión sobre el aspecto sólido de lo que no es más que incertidumbre: siempre hay una probabilidad de equivocarse, que es igual al valor de p. Y además, el umbral elegido es totalmente arbitrario, de forma que una p=0,049 es estadísticamente significativa mientras que una p = 0,051 no lo es, a pesar de que sus valores son prácticamente los mismos.

Pero es que la cosa va más allá, porque no todas la p son igual de fiables. Pensad que hacemos un ensayo A con nuestro fármaco en el que participan 100 personas en el grupo de tratamiento y 100 en el de control, y que obtenemos un 35% menos de cefaleas en el grupo de intervención, con un valor de p = 0,02.

Ahora suponed otro ensayo con el mismo fármaco pero en el que participan 2000 personas en cada brazo del ensayo, obteniendo una reducción del 20% y un valor de p = 0,02. ¿Os parecen igual de fiables los resultados y la conclusión de los dos estudios?.

A primera vista el valor de p = 0,02 es significativo y similar en los dos. Sin embargo, el nivel de confianza que deberíamos depositar en cada estudio no debería ser el mismo. Pensad que pasaría si en el grupo de tratamiento del ensayo A hubiese habido cinco personas más con dolor de cabeza. El resultado de p podría haberse ido hasta 0,08, dejando de ser significativo.

Sin embargo, el mismo cambio en el ensayo B es poco probable que hubiese alterado las cosas. El ensayo B es menos susceptible a los cambios en cuanto a la significación estadística de sus resultados.

Pues bien, basándose en este razonamiento se han descrito una serie de índices de fragilidad, que describen el número mínimo de participantes cuyo estado tiene que cambiar para que el valor de p pase de ser estadísticamente significativo a no serlo.

Lógicamente, además de tener en cuenta otras características del estudio, como el tamaño muestral o el número de eventos observados, este índice de fragilidad podría darnos una idea más aproximada de la solidez de nuestras conclusiones y, por lo tanto, de la confianza que podemos depositar en nuestros resultados.

Y hasta aquí hemos llegado por hoy. Una entrada más dando vueltas alrededor de la p y de la significación estadística, cuando lo que en realidad interesa más valorar es la importancia clínica de los resultados. Pero esa es otra historia…