Ciencia sin seso… locura doble

Píldoras sobre medicina basada en pruebas

Entradas etiquetadasMáximo
image_pdf

El estadístico más deseado por una madre

Aquellos que estéis leyendo y que forméis parte de la mafia de los pediatras ya sabréis a que me estoy refiriendo: al percentil 50. No hay madre que no desee que su retoño se encuentre por encima de él en peso, talla, inteligencia y en todo lo que una buena madre pueda desear para su hijo. Por eso a los pediatras, que dedicamos nuestra vida al cuidado de los niños, nos gustan tanto los percentiles. Pero, ¿qué significado tiene el término percentil?. Empecemos desde el principio…

Cuando tenemos una distribución de valores de una variable podemos resumirla con una medida de centralización y una de dispersión. Las más habituales son la media y la desviación estándar, respectivamente, pero en ocasiones podemos utilizar otras medidas de centralización (como la mediana o la moda) y de dispersión.

La más básica de esas otras medidas de dispersión es el rango, que se define como la diferencia entre los valores mínimo y máximo de la distribución. Supongamos que reunimos los pesos al nacimiento de los últimos 100 niños de nuestra maternidad y los ordenamos tal y como aparecen en la tabla. El valor más bajo fue de 2200 gramos, mientras que el premio máximo se lo llevó un neonato que pesó 4000 gramos. El rango en este caso sería de 1800 gramos pero, claro está, si no disponemos de la tabla y solo nos dicen esto no tendríamos idea de cómo de grandes son nuestros recién nacidos. Por eso suele ser mejor expresar el rango con los valores mínimo y máximo. En nuestro caso sería de 2200 a 4000 gramos.

Si recordáis de cómo se calcula la mediana, veréis que está en 3050 gramos. Para completar el cuadro necesitamos una medida que nos diga cómo se distribuyen el resto de los pesos alrededor de la mediana y dentro del rango.

La forma más sencilla es dividir la distribución en cuatro partes iguales que incluya cada una el 25% de los niños. Cada uno de estos marcadores se denomina cuartil y hay tres: el primer cuartil (entre el mínimo y el 25%), el segundo cuartil (que coincide con la mediana y se sitúa entre el mínimo y el 50%) y el tercer cuartil (entre el mínimo y el 75%). Obtenemos así cuatro segmentos: del mínimo al primer cuartil, del primero al segundo (la mediana), del segundo al tercero y del tercero al máximo. En nuestro caso, los tres cuartiles serían 2830, 3050 y 3200 gramos. Hay quien llamaría a estos cuartiles el inferior, la mediana y el superior, pero estaríamos hablando de lo mismo.

Pues bien, si nos dicen que la mediana es de 3050 gramos y que el 50% de los niños pesan entre 2830 y 3200 gramos, ya nos hacemos una idea bastante aproximada de cuál es el peso al nacimiento de nuestros recién nacidos. Este intervalo se denomina rango intercuartílico y suele proporcionarse junto con la mediana para resumir la distribución. En nuestro caso: mediana de 3050 gramos, rango intercuartílico de 2830 a 3200 gramos.

Pero podemos ir mucho más allá. Podemos dividir la distribución en el número de segmentos que queramos. Los deciles la dividen en diez segmentos y nuestros venerados percentiles en cien.

Existe una fórmula bastante sencilla para calcular el percentil que queramos. Por ejemplo, el percentil P estará en la posición (P/100)x(n+1), donde n representa el tamaño de la muestra. En nuestra distribución de neonatos, el percentil 22 estaría en la posición (22/100)x(100+1) = 22,2, o sea, 2770 gramos.

Los más avispados ya os habréis dado cuenta que nuestros 3050 gramos corresponden, no solo a la mediana, sino también al decil quinto y al percentil 50, el deseado por nuestras madres.

La gran utilidad de los percentiles, además de dar satisfacción al 50% de las madres (aquellas que tienen a sus hijos por encima de la media) es que nos permiten estimar la probabilidad de determinado valor de la variable medida dentro de la población. En general, cuanto más cerca esté uno de la media siempre será mejor (por lo menos en medicina) y cuanto más alejado más probable será que alguien te lleve a un médico para ver porqué no estás en el dichoso percentil 50 o, incluso mejor, algo por encima.

Pero si de verdad queremos afinar más sobre la probabilidad de obtener un valor determinado dentro de una distribución de datos hay otros métodos que pasan por la estandarización de la medida de dispersión que utilicemos, pero esa es otra historia…