Ciencia sin seso… locura doble

Píldoras sobre medicina basada en pruebas

Entradas etiquetadasModelo de efectos fijos
image_pdf

Cuando muchos pocos hacen un mucho

Todos conoceréis el cuento chino del pobre grano de arroz solitario que se cae al suelo y no lo oye nadie. Claro que si en lugar de caerse un grano se cae un saco lleno de arroz eso ya será otra cosa. Hay muchos ejemplos de que la unión hace la fuerza. Una hormiga roja es inofensiva, salvo que te muerda en alguna zona blanda y noble, que suelen ser las más sensibles. Pero ¿qué me decís de una marabunta de millones de hormigas rojas?. Eso sí que acojona, porque si se juntan todas y vienen a por ti, poco podrás hacer para parar su empuje. Sí, la suma de muchos “pocos” hace un “mucho”.

Y esto también pasa en estadística. Con una muestra relativamente pequeña de votantes bien elegidos podemos estimar quién va a ganar unas elecciones en las que votan millones. Así que, ¿qué no podríamos hacer con un montón de esas muestras?. Seguro que la estimación sería más fiable y más generalizable.

Pues bien, esta es precisamente una de las finalidades del metanálisis, que utiliza diversas técnicas estadísticas para hacer una síntesis cuantitativa de los resultados de un conjunto de estudios que, aunque tratan de responder a la misma pregunta, no llegan exactamente al mismo resultado.

Sabemos que antes de combinar los resultados de los estudios primarios de un metanálisis debemos comprobar previamente que estos estudios son homogéneos entre sí, ya que, en caso contrario, tendría poco sentido hacerlo y los resultados que obtendríamos no serían válidos ni podríamos generalizarlos. Para esto existen una serie de métodos, tanto numéricos como gráficos, que nos pueden asegurar que tenemos la homogeneidad que necesitamos.

El siguiente paso es analizar los estimadores del tamaño de efecto de los estudios, ponderándolos según la contribución que cada estudio va a tener sobre el resultado global. La forma más habitual es ponderar la estimación del tamaño del efecto por la inversa de la varianza de los resultados, realizando posteriormente el análisis para obtener el efecto medio. Para esto hay varias posibilidades, aunque los dos métodos que se utilizan habitualmente son el modelo de efectos fijos y el modelo de efectos aleatorios. Ambos modelos difieren en la concepción que hacen de la población de partida de la que proceden los estudios primarios.

El modelo de efectos fijos considera que no existe heterogeneidad y que todos los estudios estiman el mismo tamaño de efecto de la población, por lo que se asume que la variabilidad que se observa entre los estudios individuales se debe únicamente al error que se produce al realizar el muestreo aleatorio en cada estudio. Este error se cuantifica estimando la varianza intraestudios, asumiendo que las diferencias en los tamaños de efecto estimados se deben solo a que se han utilizado muestras de sujetos diferentes.

Por otro lado, en el modelo de efectos aleatorios se parte de la base de que el tamaño de efecto sigue una distribución de frecuencias normal dentro de la población, por lo que cada estudio estima un tamaño de efecto diferente. Por lo tanto, además de la varianza intraestudios debida al error del muestreo aleatorio, el modelo incluye también la variabilidad entre estudios, que representaría la desviación de cada estudio respecto del tamaño de efecto medio. Estos dos términos de error son independientes entre sí, contribuyendo ambos a la varianza del estimador de los estudios.

En resumen, el modelo de efectos fijos incorpora solo un término de error por la variabilidad de cada estudio, mientras que el de efectos aleatorios añade, además, otro término de error debido a la variabilidad entre los estudios.

Veis que no he escrito ni una sola fórmula. En realidad no nos hace falta conocerlas y son bastante antipáticas, llenas de letras griegas que no hay quien las entienda. Pero no os preocupéis. Como siempre, los programas estadísticos como RevMan de la Cochrane Collaboration permiten hacer los cálculos de forma sencilla, quitando y sacando estudios del análisis y cambiando de modelo según nos apetezca.

El tipo de modelo a elegir tiene su importancia. Si en el análisis previo de homogeneidad vemos que los estudios son homogéneos podremos utilizar el modelo de efectos fijos. Pero si detectamos que existe heterogeneidad, dentro de los límites que nos permiten combinar los estudios, será preferible usar el modelo de efectos aleatorios.

Otra consideración a realizar es la de la aplicabilidad o validez externa de los resultados del metanálisis. Si hemos utilizado el modelo de efectos fijos será comprometido generalizar los resultados fuera de las poblaciones con características similares a las de los estudios incluidos. Esto no ocurre con los datos utilizados con el modelo de efectos aleatorios, cuya validez externa es mayor por provenir de poblaciones de diferentes estudios.

En cualquier caso, obtendremos una medida de efecto medio junto con su intervalo de confianza. Este intervalo de confianza será estadísticamente significativo cuando no cruce la línea de efecto nulo, que ya sabemos que es cero para diferencias de medias y uno para odds ratios y riesgos relativos. Además, la amplitud del intervalo nos informará sobre la precisión de la estimación del efecto medio en la población: cuánto más ancho, menos preciso, y viceversa.

Si pensáis un poco comprenderéis en seguida porqué el modelo de efectos aleatorios es más conservador que el de efectos fijos en el sentido de que los intervalos de confianza que se obtienen son menos precisos, ya que incorpora más variabilidad en su análisis. En algún caso puede ocurrir que el estimador sea significativo si usamos el de efectos fijos y no lo sea si usamos el de efectos aleatorios, pero esto no debe condicionarnos a la hora de escoger el modelo a utilizar. Siempre debemos basarnos en la medida previa de heterogeneidad aunque, si tenemos dudas, también podemos utilizar los dos y comparar los diferentes resultados.

Y ya solo nos quedaría presentar los resultados de forma correcta. Los datos de los metanálisis suelen representarse en un gráfico específico que se suele conocer por su nombre en inglés: el forest plot. Pero esa es otra historia…