Ciencia sin seso… locura doble

Píldoras sobre medicina basada en pruebas

Entradas etiquetadasNúmero de impacto de los casos expuestos
image_pdf

Simplificando el impacto

En los estudios epidemiológicos es habitual encontrar un conjunto de medidas de efecto como pueden ser los riesgos en expuestos y no expuestos, los riesgos relativos y las reducciones de riesgo. Sin embargo, para que el análisis de un estudio pueda considerarse bien hecho, conviene que las medidas de efecto se acompañen de una serie de medidas de impacto, que son las que nos informan de forma más precisa sobre el verdadero efecto de la exposición o intervención sobre el efecto que estamos estudiando.

Por ejemplo, si realizamos un estudio sobre la prevención de la mortalidad por una enfermedad con un tratamiento X, un riesgo relativo de 0,5 nos dirá que existe la mitad de probabilidad de morirse si tomamos el fármaco, pero no podemos ver de forma clara el impacto del tratamiento. Sin embargo, si calculamos el número necesario a tratar (NNT) y nos sale que es de dos, sabremos que uno de cada dos personas tratadas evitarán la muerte por esa enfermedad. Esta medida de impacto, el NNT, sí nos da una idea más clara del efecto real de la intervención en nuestra práctica.

Existen diversas medidas de impacto, además del NNT. En los estudios de cohortes, que son en los que nos vamos a centrar hoy, podemos calcular la diferencia de incidencias entre expuestos y no expuestos, la proporción atribuible en expuestos (PAE), la proporción evitable en expuestos (PEE) y la proporción atribuible poblacional (PAP).

La PAE nos indica el riesgo de presentar el efecto en los expuestos que se debe específicamente a eso, a haber estado expuesto. La PEE nos informaría de los casos de enfermedad en el grupo expuesto que podrían haberse evitado si no hubiese existido la exposición. formulas_cohortesPor último, la PAP es un riesgo específico atribuible que describe la proporción de casos que se podrían prevenir en la población si se eliminase completamente el factor de riesgo en estudio. Como un cuarto parámetro, considerando la presencia de exposición y enfermedad, podemos calcular la fracción de exposición en los casos (FEc), que define la proporción de casos expuestos que son atribuibles al factor de riesgo.

En la tabla que os adjunto podéis ver las fórmulas para el cálculo de estos parámetros.

El problema de estas medidas de impacto es que pueden ser, en ocasiones, difíciles de interpretar por parte del clínico. Por ese motivo, e inspirados en el cálculo de los NNT, se han ideado una serie de medidas denominadas números de impacto, que nos dan una idea más directa del efecto del factor de exposición sobre la enfermedad en estudio. Estos números de impacto son el número de impacto en expuestos (NIE), el número de impacto en casos (NIC) y el número de impacto de los casos expuestos (NICE).

Empecemos por el más sencillo. El NIE sería el equivalente al NNT y se calcularía como el inverso de la reducción absoluta de riesgos o de la diferencia de riesgos. El NNT es el número de personas que deben ser tratadas para prevenir un caso en comparación con el grupo control. El NIE representa el número medio de personas que tienen que exponerse al factor de riesgo para que se produzca un nuevo caso de enfermedad en comparación con las personas no expuestas. Por ejemplo, un NIE de 10 significa que de cada 10 expuestos se producirá un caso de enfermedad atribuible al factor de riesgo estudiado.

El NIC es el inverso de la PAP, así que define el número medio de personas enfermas entre las que un caso es debido al factor de riesgo. Un NIC de 10 quiere decir que por cada 10 enfermos de la población, uno es atribuible al factor de riesgo en estudio.

Por fin, el NICE es el inverso de la FEc. Es el número medio de enfermos entre los que un caso es atribuible al factor de riesgo.

En resumen, estas tres medidas miden el impacto de la exposición entre todos los expuestos (NIE), entre todos los enfermos (NIC) y entre todos los enfermos que han estado expuestos (NICE).

numeros-impactoVeamos un ejemplo con los datos de la tabla adjunta, que se corresponden a un estudio ficticio sobre el efecto de la mortalidad coronaria por el hábito de fumar. Yo he usado una calculadora epidemiológica de las muchas que hay disponibles en Internet y he calculado una diferencia de riesgos de 0,0027, una PAP de 0,16 y una FEc de 0,4. Ya podemos calcular nuestros números de impacto.

El NIE será de 1/0,0027 = 366. Redondeando, de cada 365 fumadores, uno morirá por una cardiopatía atribuible al tabaco.

El NIC será de 1/0,16 = 6,25. De cada seis muertos por cardiopatía en la población, uno será atribuible al tabaco.

Por fin, el NICE será de 1/0,4 = 2,5. Aproximadamente, por cada tres muertos por cardiopatía entre los que fumaban, uno sería atribuible al vicio del tabaco.

Y aquí lo dejamos por hoy. No olvidéis que los datos del ejemplo son ficticios y no sé si se ajustan mucho a la realidad.

Hemos hablado solo de las estimaciones puntuales de los números de impacto pero, como siempre, lo preferible es el cálculo de sus intervalos de confianza. Los tres se pueden calcular con los límites de los intervalos de las medidas a partir de las que se obtienen los números de impacto, pero lo mejor es utilizar una calculadora que lo haga por nosotros. El cálculo de los intervalos de algunos parámetros como, por ejemplo, de la PAP puede ser complejo. Pero esa es otra historia…