Ciencia sin seso… locura doble

Píldoras sobre medicina basada en pruebas

Entradas etiquetadasOdds ratio
image_pdf

Las generalizaciones son peligrosas

A todos nos gusta generalizar y a los estadísticos y epidemiólogos más que a nadie. A fin de cuentas, uno de los propósitos principales de estas dos ciencias es sacar conclusiones de una población inaccesible a partir de los resultados obtenidos en una muestra más pequeña y, por tanto, más manejable.

Por ejemplo, cuando hacemos un estudio sobre el efecto de un factor de riesgo sobre una determinada enfermedad, normalmente lo hacemos con un pequeño número de casos, que es nuestra muestra, pero para sacar conclusiones que podamos extrapolar a toda la población. Claro que, para poder hacerlo, necesitamos que la muestra sea la adecuada  y sea representativa de la población en la que queremos generalizar los resultados. Vamos a ver con un ejemplo qué pasa cuando esta premisa no se cumple.

Berkson1Supongamos que queremos estudiar si los sujetos afectos de neumonía tienen más riesgo de tener hipertensión arterial. Si vamos a lo más fácil, podemos usar nuestra base de datos de ingresos hospitalarios y obtener nuestra muestra de estudio tal como observamos en la primera tabla. Vemos que nuestra muestra engloba 135 pacientes que han requerido ingreso, 19 de los cuales tuvieron neumonía y cuatro, además hipertensión. Por otra parte, también podemos ver el número de hipertensos que es de 10, cuatro con neumonía y seis sin ella.

En primer lugar, vamos a ver si hay asociación entre las dos variables. Para ello podemos hacer un test de la chi-cuadrado bajo la hipótesis nula de no asociación. Yo he usado el programa R para calcularlo. Primero construyo la tabla con el siguiente comando:

Ingreso <- matrix(c(4,6,15,110), ncol=2)

y luego calculo la chi aplicando la corrección de Yates (hay una celda con valor menor de cinco):

chisq.test(Ingreso, correct=T)

Obtengo así un valor de chi = 3,91, que para un grado de libertad corresponde a una p=0,04. Como es menor de 0,05, rechazo la hipótesis nula de no asociación y concluyo que sí hay asociación entre las dos variables.

Ahora, para calcular la fuerza de la asociación calculo su odds ratio, utilizando para ello cualquiera de las calculadoras de epidemiología disponibles en Internet. La odds ratio es de 4,89, con un intervalo de confianza del 95% de 1,24 a 19,34. Concluimos así que los pacientes con neumonía tienen casi cinco veces más riesgo de tener hipertensión.

Y hasta aquí todo va bien. El problema surgiría si caemos en la tentación de generalizar el resultado a la población general. Y esto es así porque la odds ratio mide la fuerza de la asociación entre dos variables siempre que la muestra se haya obtenido de forma aleatoria, lo que no es nuestro caso. Veamos qué pasa si repetimos el experimento con una muestra más grande obtenida, no de nuestro registro hospitalario, sino de la población general (donde están incluidos los participantes en el primer experimento).

berkson2Obtenemos así la segunda tabla de contingencia, que engloba 2591 pacientes, 211 de los cuales son hipertensos. Siguiendo el mismo procedimiento del primer experimento, calculamos primero la chi-cuadrado, que, en este caso, tiene un valor de 1,86, al que le corresponde una p=0,17. Al ser mayor de 0,05 no podemos rechazar la hipótesis nula, luego tenemos que concluir que no hay asociación entre las dos variables.

Ya no tiene mucho sentido calcular la odds ratio, pero si lo hacemos veremos que vale 0,96, con un intervalo de confianza del 95% de 0,73 a 1,21. Como incluye el valor  uno, la odds ratio tampoco es significativa.

¿Por qué ocurre esta diferencia entre los dos resultados?.  Esto ocurre porque los riesgos de hospitalización son diferentes entre los distintos grupos. De los 100 individuos que tienen neumonía (segunda tabla), cuatro precisan ingreso (primera tabla), luego el riesgo es de 4/10 = 0,4. El riesgo entre los que tienen solo hipertensión es de 6/111 = 0,05, y el de los que no tienen ninguna enfermedad es de 110/1230 = 0,09.

De esta forma, vemos que los pacientes con neumonía tienen más riesgo que el resto de ser hospitalizados.  Si cometemos el error de incluir solo pacientes hospitalizados, nuestros resultados estarán sesgados respecto a la población general, observando así una asociación que, en realidad, no existe. Este tipo de asociación espuria entre variables que se produce por una elección incorrecta de la muestra se conoce con el nombre de falacia de Berkson.

Y aquí lo dejamos. Vemos que el modo de elegir la muestra es de importancia capital a la hora de generalizar los resultados de un estudio. Es lo que suele ocurrir con los ensayos clínicos con criterios de inclusión muy estrictos, que es difícil generalizar sus resultados. Por eso hay autores que prefieren realizar ensayos clínicos pragmáticos, más pegados a la realidad cotidiana y mucho más generalizables. Pero esa es otra historia…

La trampa de la ratio

El mundo de la ciencia está lleno de trampas. Las hay por cualquier parte. No se libran ni tan siquiera las grandes revistas médicas ni los autores más prestigiosos. Muchos de ellos tienden a aprovecharse de nuestra ignorancia utilizando los indicadores de medida que más interesan para mostrar los resultados que se buscan. Por este motivo, tenemos que estar muy alerta siempre y fijarnos en los datos de los estudios para llegar a nuestra propia interpretación.

Desgraciadamente, no podemos evitar que se manipulen los resultados o la forma de presentarlos, pero sí que podemos pelear contra nuestra ignorancia y hacer siempre lectura crítica de los trabajos científicos.

Un ejemplo de lo que estoy hablando es la elección entre riesgos relativos y odds ratios.

Ya sabéis la diferencia entre riesgo y odds. El riesgo es una proporción entre los sujetos que presentan un evento y el total de sujetos susceptibles. Así, podemos calcular el riesgo de sufrir un infarto entre los que fuman (fumadores infartados dividido por el total de fumadores de la muestra) y entre los que no fuman (lo mismo, pero con no fumadores). Si vamos un paso más allá, podemos calcular la razón de los dos riesgos, llamada riesgo relativo (RR) o razón de riesgos, que nos indica cuánto más probable es que se produzca un evento en un grupo respecto al otro.

Por su parte, el concepto de odds es un poco diferente. La odds nos indica cuánto más probable es que se produzca un suceso frente a que no se produzca (p/(1-p)). Por ejemplo, la odds de sufrir un infarto en fumadores se calcularía dividiendo la probabilidad de infarto en fumadores (fumadores infartados dividido por el total de fumadores de la muestra, exactamente igual que el riesgo) por la probabilidad de no sufrir infarto (fumadores no infartados dividido por el total de fumadores de la muestra o, lo que es igual, uno menos la odds de padecerlo). Al igual que hacíamos con los riesgos, podemos calcular la razón de las odds de los dos grupos y obtener la odds ratio (OR), que nos da una idea de cuánto más probable es que se produzca el evento es un grupo que en el otro.

Como veis, son conceptos parecidos, pero diferentes. En ambos casos el valor nulo es uno. Un valor mayor que uno indica que los sujetos del numerador tienen más riesgo y un valor menor que uno, que tienen menos riesgo. Así, un RR de 2,5 querría decir que el grupo del numerador tiene una probabilidad un 150% mayor de presentar el evento que estemos midiendo. Una OR de 2,5 quiere decir que es una vez y media más probable que ocurra a que no ocurra el suceso en el grupo del numerador.

Por otra parte, un RR de 0,4 indica una reducción de la probabilidad de ocurrir del 60% en el grupo del numerador. La OR de 0,4 es más compleja de interpretar, pero viene a decir más o menos lo mismo.

¿Cuál de las dos debemos utilizar?. Depende del tipo de estudio. Para poder calcular el RR tenemos que calcular previamente los riesgos en los dos grupos, y para eso tenemos que conocer la prevalencia o la incidencia acumulada de la enfermedad, por lo que esta medida suele utilizarse en los estudios de cohortes y en los ensayos clínicos.

En los estudios en los que no se conoce la prevalencia de la enfermedad, como es el caso de los estudios de casos y controles, no hay más remedio que usar OR. Pero el uso de OR no se limita a este tipo de estudio. Podemos usarla cuando queramos, en lugar de los RR. Además, un caso particular es cuando se recurre a modelos de regresión logística para ajustar por los diferentes factores de confusión detectados, que proporcionan OR ajustadas.

trampa_OREn cualquier caso, el valor del RR y de la OR es similar cuando la prevalencia del efecto es baja, por debajo de un 10%, aunque la OR siempre es un poco más baja que el RR para valores menores de uno y un poco más alta para valores mayores. ¿Un poco?. Bueno, a veces no tan poco. En la figura tenéis representada, aproximadamente, la relación entre OR y RR. Veis que, a medida que la frecuencia del evento aumenta, la OR crece mucho más rápido que el RR. Y aquí es donde viene la trampa, ya que para un mismo riesgo, el impacto puede parecer mucho mayor si usamos una OR que si usamos un RR. La OR puede ser engañosa cuando el evento es frecuente. Veámoslo con un ejemplo.

Imaginemos que estoy muy preocupado con la obesidad entre los asistentes a una sala de cine y quiero evitar que entren a ver la película con un tanque enorme de una bebida azucarada cuya marca no voy a mencionar. Así que mido cuántos espectadores compran la bebida y veo que son el 95%. Entonces, otro día diferente, coloco un cartel en el bar advirtiendo de lo malo para la salud que es tomar bebidas azucaradas en grandes cantidades y veo con agrado que el porcentaje de los que la compran baja a un 85%.

En este caso, la medida absoluta de efecto sería la diferencia de riesgos, que es solo de un 10%. Algo es algo, pero no parece demasiado, solo consigo concienciar a uno de cada 10. Veamos qué pasa con las medidas de asociación.

El RR se calcularía como el cociente 95/85 = 1,17. Esto indica que si no colocamos el cartel, el riesgo de comprar la bebida es un 17% mayor que si lo ponemos. No parece demasiado, ¿verdad?.

La odds de comprar sería de 95/(1-95) sin cartel y de 85/(1-85) con cartel, luego la OR sería igual a (95/5)/(85/15) = 3,35. Quiere decir que es tres veces más probable comprar sin cartel que con cartel.

Parece claro que el RR da una idea que se corresponde mejor con la medida absoluta (la diferencia de riesgos), pero ahora os pregunto: si mi cuñado tiene una fábrica de carteles, ¿qué medida creéis que emplearía?. Sin duda, os presentaría la OR.

Por este motivo, siempre debemos mirar los resultados para ver si podemos calcular alguna medida absoluta a partir de los datos del estudio. En ocasiones esto no es tan fácil como en nuestro ejemplo, como ocurre cuando nos presentan las OR que salen del modelo de regresión. En estos casos, si conocemos la prevalencia del efecto o enfermedad en estudio, siempre podemos calcular el RR equivalente con la siguiente fórmula:RR= \frac{OR}{(1-Prev)+(Prev\times OR)}Y aquí dejamos las trampas por hoy. Veis como se puede manipular la forma de expresar los resultados para decir lo que uno quiere sin llegar a mentir. Hay más ejemplos de mal uso de medidas de asociación relativas en lugar de absolutas, como el de utilizar la diferencia relativa del riesgo en lugar de la diferencia absoluta. Pero esa es otra historia…

La tabla

Existen gran cantidad de tablas. Y tienen un gran papel a lo largo de nuestra vida. Quizás la que primero nos asalta en nuestra más tierna infancia es la tabla de multiplicar. ¿Quién no recuerda con nostalgia, al menos los más mayorcitos, como  repetíamos como loros aquello del dos por uno es dos, dos por… hasta que lo aprendíamos de memoria?. Pero no hicimos más que dominar las múltiples tablas de multiplicar cuando nos topamos con la tabla periódica de los elementos. Otra vez a aprender de memoria, esta vez ayudados de reglas nemotécnicas imposiblemente idiotas sobre Indios que Ganaban Buena Altura y no sé qué.

Pero es con los años cuando llega una de las peores de todas: la tabla de composición de alimentos, con su celda llena de calorías. Esta tabla nos persigue hasta en sueños. Y todo porque comer mucho tiene gran número de inconvenientes, demostrados la mayor parte de ellos gracias a la ayuda de otro tipo de tabla: la tabla de contingencia.

Las tablas de contingencia son usadas muy frecuentemente en Epidemiología para analizar la relación entre dos o más variables. Están formadas por filas y columnas. En las filas se suelen colocar los grupos por nivel de exposición al factor de estudio y en las columnas las diferentes categorías que tienen que ver con el estado de enfermedad o daño que investigamos. Filas y columnas se cruzan para formar celdas donde se representa la frecuencia de esa determinada combinación de variables.

Lo más habitual es que se representen dos variables (nuestra querida tabla 2×2), una dependiente y otra independiente, pero esto no siempre es así. Puede haber más de dos variables y, en ocasiones, puede no existir una dirección de dependencia entre las variables antes de realizar el análisis.

Las tablas 2×2 simples permiten analizar la relación entre dos variables dicotómicas. Según su contenido y el diseño del estudio al que pertenezcan, sus celdas pueden tener significados ligeramente diferentes, lo mismo que ocurre con las medidas que podemos calcular a partir de los datos de la tabla.

contingencia_transversalLas primeras serían las tablas de estudios transversales. En este tipo de estudios se representa una especie de foto fija de nuestra muestra que nos permite estudiar la relación entre las variables. Son, pues, estudios de prevalencia y, aunque los datos se recojan a lo largo de un periodo de tiempo, los resultados representan esa foto fija a la que ya nos hemos referido. En las columnas se coloca la variable dependiente (enfermedad o daño producido) y en las filas la independiente (el grado de exposición), con lo que podemos calcular una serie de medidas de frecuencia, de asociación y de significación estadística.

Las medidas de frecuencia son la prevalencia de enfermedad entre expuestos (EXP) y no expuestos (NEXP) y la prevalencia de exposición entre enfermos (ENF) y no enfermos (NENF). Estas prevalencias representan el número de personas enfermas, sanas, expuestas y no expuestas en relación con el total de cada grupo, por lo que son tasas estimadas en un momento puntual.

Las medidas de asociación son las razones de las prevalencias que acabamos de mencionar según enfermedad y exposición y la odds ratio, que nos dice cuánto más probable es que se produzca la enfermedad respecto a que no se produzca en EXP frente a NEXP. Un valor de estas medidas mayor de uno indica que el factor es de riesgo para que se produzca la enfermedad. Si vale de cero a uno querrá decir que el factor es de protección. Y si vale uno, pues que ni carne ni pescado.

Por último, como en todos los tipos de tablas que vamos a mencionar, se pueden calcular medidas de asociación estadística, fundamentalmente la chi-cuadrado con o sin corrección, la prueba exacta de Fisher y el valor de la p, uni o bilateral.

Muy parecidas a estas que hemos visto son las tablas de los estudios de casos y controles. En estos se trata de ver si diferentes grados de la exposición explican diferentes grados de enfermedad. En la columnas se colocan los casos y los controles y en las filas los EXP y NEXP.

contingencia_casos_controlesLas medidas de frecuencia que podemos calcular son la proporción de casos expuestos (respecto al total de casos) y la proporción de controles expuestos (respecto al total de controles). Lógicamente, podemos calcular también las proporciones de NEXP calculando los complementarios de los anteriores.

La medida de asociación fundamental es la odds ratio, que ya conocemos y en la que no nos vamos a detener mucho. Ya sabéis que, de forma simplificada, podemos calcularla como el cociente de los productos cruzados de la tabla y que nos indica cuánto es más probable contraer la enfermedad en EXP que en NEXP. La otra medida sería la fracción atribuible en los expuestos (FAExp), que nos indica el número de enfermos que son debidos a la acción directa de la exposición.

Podemos, en este tipo de tablas, calcular, además, una medida de impacto: la fracción atribuible en la población (FAPob), que sería el impacto potencial que tendría sobre la población el eliminar el factor de exposición. Si es un factor de riesgo sería un impacto positivo y, a la inversa, si es protector, negativo.

Comentar que las medidas de significación estadística dependerán de que los datos sean pareados (utilizaremos la prueba de McNemar) o no pareados (chi-cuadrado, prueba exacta de Fisher y valor de p).

contingencia_cohortes_acumulada

El tercer tipo de tablas de contingencia es el que corresponde a los estudios de cohortes, aunque la estructura difiere un poco si son estudios de casos nuevos producidos durante todo el periodo de estudio (incidencia acumulada) o si consideran el periodo de tiempo del estudio, el momento de aparición de la enfermedad y el diferente seguimiento de los grupos (tasa de incidencia o densidad de incidencia).

Las tablas de los estudios de incidencia acumulada (IA) son similares a las que hemos visto hasta ahora. En las columnas se representa el estado de enfermedad y en las filas el de exposición. Por otra parte, las de densidad o tasa de incidencia (TI) representan en una de las columnas el número de enfermos y en la otra el seguimiento en personas-año, de forma que los que tienen un seguimiento más prolongado tienen un mayor peso a la hora de calcular las medidas de frecuencia, asociación, etc.

contingencia_cohortes_densidadLas medidas de frecuencia serían los riesgos en EXP (Re) y en NEXP (Ro) para los casos de IA y las tasas de incidencia en EXP (TIe) y NEXP (TIo) en los de TI.

Los cocientes de las medidas anteriores nos permiten calcular las medidas de asociación: riesgos relativos (RR), reducción absoluta de riesgo (RAR) y reducción relativa de riesgo (RRR) para los estudios de IA y reducciones absolutas y relativas de las TI para los estudios de densidad. Podemos calcular también la FAExp como hacíamos con los estudios de casos y controles, al igual que la FAPob como medida de impacto.

En teoría pueden calcularse también las odds ratios, pero suelen ser menos utilizadas en este tipo de tablas. En cualquier caso, ya sabemos que odds ratio y RR se parecerán cuando la prevalencia de la enfermedad sea baja.

Para terminar con este tipo de tablas, podemos calcular las medidas de asociación estadística: chi-cuadrado, Fisher y p para estudios de IA y otras pruebas de asociación para los estudios de densidad de incidencia.

Como siempre, todos estos cálculos pueden realizarse a mano, aunque os recomiendo utilizar calculadoras, como la disponible en la Red CASPe. Es más sencillo, más rápido y, además, nos proporcionan todos estos parámetros con sus correspondientes intervalos de confianza, con lo que podemos estimar también su precisión.

Y con esto hemos llegado al final. Existen más tipos de tablas, con múltiples niveles por tratar más de dos variables, estratificadas según diferentes factores, etc. Pero esa es otra historia…

Una relación sin compromiso

Sabemos ya de la relación entre variables. ¿Quién duda que fumar mata, o que la tele seca el cerebro?. La cuestión radica en que estas relaciones hay que intentar cuantificarlas de una forma objetiva ya que, en caso contrario, siempre habrá alguien que pueda ponerlas en duda. Para ello, habrá que utilizar algún parámetro que estudie si nuestras dos variables varían de forma relacionada.

Cuando las dos variables son dicotómicas la solución es sencilla: podemos usar la odds ratio. En el caso de la tele y el daño cerebral podríamos utilizarla para calcular si realmente es más probable que tengan los sesos secos los que ven la tele que los que no (aunque yo no perdería el tiempo). Pero, ¿qué ocurre si las dos variables son continuas?. Aquí no nos vale la odds ratio, sino que hay que emplear otras herramientas. Veámoslo con un ejemplo.

R_generalSupongamos que tomo la presión arterial a una muestra de 300 personas y represento los valores de presión sistólica y diastólica, tal y como os muestro en el primer gráfico. Viendo el gráfico a simple vista uno ya se da cuenta de que aquí hay tomate. Si os fijáis, los valores altos de presión sistólica se suelen asociar con valores altos de diastólica y, al contrario, los valores bajos de sistólica se asocian con valores bajos de diastólica. Yo diría que varían de forma similar: a mayores valores de una, mayores de la otra, y viceversa. Para verlo mejor, fijaos en los dos gráficos siguientes.R_estandar_simple

En el primero se muestran los valores de presión estandarizados (cada valor menos la media). Ya vemos que la mayor parte de los puntos están en los cuadrantes inferior izquierdo y superior derecho. Estos todavía se ve mejor en el segundo gráfico, en el que me he comido los valores de sistólica entre ±10 mmHg y de diastólica entre ±5 mmHg alrededor del cero, que serían las medias estandarizadas. Vamos a ver si podemos cuantificar esto de alguna manera.

Recordáis que la varianza medía cuánto variaban los valores de una distribución respecto de la media. A cada valor se le restaba la media, se elevaba al cuadrado para que fuese siempre positivo (y no se anulasen las diferencias positivas con las negativas), se sumaban todas estas diferencias y se dividía por el tamaño de la muestra (en realidad, por el tamaño de la muestra menos uno, y no preguntéis porqué, solo los matemáticos lo saben). Ya sabéis que la raíz cuadrada de la varianza es la desviación típica o desviación estándar, la reina de las medidas de dispersión.

Pues bien, con una pareja de variables podemos hacer una cosa similar. Calculamos, para cada pareja, las diferencias con sus medias y multiplicamos estas diferencias (es el equivalente a la elevación al cuadrado de la diferencia que hacíamos con la varianza). Por último, sumamos todos estos productos y los dividimos entre el tamaño de la muestra menos uno, obteniendo así está versión de la varianza de las parejas que se llama, como no podía ser de otra forma, covarianza.

varianza = \frac{1}{n-1}\sum_{i=1}^{n}{(x_{i}-\overline{x})}^{2}      covarianza = \frac{1}{n-1}\sum_{i=1}^{n}(x_{i}-\overline{\mu }_{x})(x_{i}-\overline{\mu }_{y})

¿Y qué nos dice el valor de la covarianza?. Pues, poca cosa, ya que dependerá de las magnitudes de las variables, que pueden ser diferentes según de qué estemos hablando. Para esquivar este problemilla recurrimos a una solución muy socorrida en este tipo de situaciones: estandarizar.

De esta forma, dividimos las diferencias respecto a la media por sus desviaciones estándar, obteniendo así el mundialmente famoso coeficiente de correlación lineal de Pearson.

coeficiente\ de\ correlación\ de\ Pearson = \frac{1}{n-1}\sum_{i=1}^{n}(\frac{{}x_{i}-\overline{\mu }_{x}}{\sigma _{x}})(\frac{{}y_{i}-\overline{\mu }_{y}}{\sigma _{y}})

Bueno es que sepáis que, en realidad, Pearson solo hizo el desarrollo inicial y que el verdadero padre del coeficiente de marras fue Francis Galton. El pobre estuvo toda su vida intentando hacer algo importante porque tenía celos de su primo, mucho más famoso, un tal Charles Darwin, que me parece que escribió algo sobre unas especies que se comen unas a otras y que decía que el secreto está en procrear lo más posible para sobrevivir.

R_ejemplos_independEl coeficiente de correlación de Pearson, r para los amigos, puede tener cualquier valor entre -1 y 1. Cuando vale cero quiere decir que las variables no están correlacionadas, pero no confundáis esto con que sean o no independientes; como dice el título de esta entrada, la relación del coeficiente de Pearson no compromete a las variables a nada serio. No tienen nada que ver correlación e independencia, son conceptos diferentes. Si nos fijamos en las dos gráficas de ejemplo podremos ver que r es igual a cero en las dos. Sin embargo, aunque en la primera las variables sean independientes, esto no es cierto en la segunda, la que representa la función y = |x|.

Si r es mayor que cero quiere decir que la correlación es positiva, de forma que las dos variables varían en el mismo sentido: cuando una aumenta, también lo hace la otra y, al revés, cuando una disminuye también disminuye la segunda. Se dice que esta correlación positiva es perfecta cuando r vale 1. Por otra parte, cuando r es negativo quiere decir que las variables varían en sentido opuesto: cuando una aumenta la otra disminuye, y viceversa. Una vez más, la correlación es perfecta cuando r vale -1.

Es fundamental entender que correlación tampoco implica obligatoriamente causalidad. Ya dijo Stephen J. Gould, en su libro “La falsa medida del hombre”, que asumir este hecho es uno de los dos o tres errores más graves y frecuentes del razonamiento humano. Y debe ser verdad porque, por más que he buscado, no he encontrado ningún primo suyo que le hiciese sombra, lo que me induce a pensar que lo dijo porque estaba convencido de ello. Así que ya lo sabéis, aunque cuando hay causalidad suele haber correlación, al revés no siempre ocurre lo mismo.

R_histohramasOtro error que podemos cometer es utilizar este coeficiente sin hacer una serie de comprobaciones previas. La primera es que la correlación entre las dos variables debe ser lineal. Esto es fácil de comprobar representando gráficamente los puntos y viendo que no se parece a una parábola, hipérbole o cualquier otra forma curva. La segunda es que, al menos, una de las variables debe seguir una distribución de frecuencias normal. Para esto podemos utilizar pruebas estadísticas como la de Kolmogorov-Smirnov o de Shapiro-Wilks, pero muchas veces basta con representar los histogramas con las curvas de frecuencias y ver si se ajustan. En nuestro caso, la diastólica puede que se ajuste a una normal, pero por la sistólica no pondría la mano en el fuego. Otra pista nos la da la nube de puntos del gráfico inicial: la forma elíptica o en balón de rugby nos indica que, probablemente, las variables siguen una distribución normal. Por último, la tercera comprobación es asegurar que las muestras son aleatorias. Además, solo podemos usar r dentro del rango de datos obtenidos. Si extrapolamos fuera de este rango podemos cometer errores.

Una última advertencia: no confundáis correlación con regresión. La correlación investiga la fuerza de la relación lineal entre dos variables continuas y no es útil para estimar el valor de una variable basándose en el valor de la otra. Por otra parte, la regresión (lineal, en este caso) investiga la naturaleza de la relación lineal entre dos variables continuas. La regresión sí nos sirve para predecir el valor de una variable (la dependiente) basándonos en la otra (la variable independiente). Esta técnica nos proporciona la ecuación de la recta que mejor se adapta a la nube de puntos, con dos coeficientes que nos indican el punto de corte con el eje de ordenadas y la pendiente de la recta.

¿Y qué pasa si las variables no siguen una distribución normal?. Pues que no podemos usar el coeficiente de Pearson. Pero no desesperéis, tenemos el coeficiente de Spearman y toda una batería de pruebas basadas en los rangos de los datos. Pero esa es otra historia…

La falacia del chocolate

Blanco, negro, relleno, en onzas, a la taza, en polvo, helado, con avellanas, con almendras, con frutas, con leche, puro, fondant, amargo, en pasteles, en bombones, en bebidas calientes o frías, etc, etc, etc. Todos me gustan.

chocolate_nobelAsí que podréis fácilmente imaginar mi alegría cuando mi lector de RSS me mostró el título del artículo del New England que decía que había una relación entre consumo de chocolate y premios Nobel. Ya me veía comiendo chocolate a montones con mi copia del artículo en el bolsillo para tapar la boca a todos lo que viniesen a fastidiarme la fiesta diciéndome que me estaba pasando con las calorías, la grasa, el azúcar, o lo que fuese. Al fin y al cabo, ¿qué puede ser más importante que trabajar para conseguir un Nobel?.

Llegados a este punto, podéis también fácilmente imaginar mi frustración al leer el trabajo y ver que el título tenía gato encerrado. Resulta que se trataba de un estudio ecológico.

En los estudios epidemiológicos que estamos más habituados a leer, las unidades de análisis suelen ser elementos aislados. Sin embargo, en los estudios ecológicos estas unidades se forman con agregados de individuos.

En cada unidad se obtiene una medida sintética de la frecuencia de la exposición y del efecto en los individuos de ese agregado, comprobándose al final si existe asociación entre exposición y efecto entre las diferentes unidades.

Hay dos tipos de estudios ecológicos. Por un lado están los que estudian medidas de frecuencia como la incidencia, mortalidad, etc, buscando patrones geográficos diferentes que puedan estar en relación con factores sociales, económicos, genéticos o lo que sea. Por otro, tenemos los que estudian las variaciones de las frecuencias a lo largo del tiempo con el objetivo de buscar tendencias temporales y, en caso de detectarlas, tratar de explicar su causa.

Estos estudios suelen ser sencillos y rápidos de realizar, ya que muchas veces se elaboran a partir de datos que previamente están disponibles en registros o anuarios, por lo que, además, no suelen ser demasiado caros. El problema con los estudios ecológicos es que el hecho de que exista una asociación entre las unidades de análisis no quiere decir obligatoriamente que ésta también exista a nivel de individuos. Si asumimos a la ligera esta asociación a nivel de individuos corremos el riesgo de cometer un pecado que se conoce con el bonito nombre de falacia ecológica. Uno puede ponerse a comparar toda variable que se le ocurra con la frecuencia de una enfermedad determinada hasta encontrar una asociación significativa, pero después será imposible encontrar un mecanismo plausible que la explique. En nuestro ejemplo, podría incluso darse el caso de que, a nivel individual, el comer más chocolate te embrutezca los sentidos y te aleje del ansiado premio Nobel.

Y para el que no lo crea, vamos a verlo con un ejemplo absurdo y totalmente inventado. Supongamos que queremos saber si hay relación entre ver la televisión durante más de cuatro horas al día y ser vegetariano estricto. Resulta que tenemos los datos de tres encuestas realizadas en tres ciudades, que vamos a llamar A, B y C para no buscarnos más líos.falacia

Si calculamos la prevalencia de teleadicción y vegetarianismo vemos que es de 0,4 en A, 0,5 en B y 0,6 en C. Está bastante claro, en las ciudades en las que hay más adictos a la caja tonta hay más vegetarianos estrictos, lo que puede indicar que el uso de la televisión es incluso más peligroso de lo que ya creíamos previamente.

Pero estos son resultados agregados. ¿Qué pasa a nivel individual?. Pues vemos que las odds ratios son de 0,33 en A y C y de 0,44 en B. Así que, sorprendentemente, aunque en las ciudades con más teleadictos haya más vegetarianos, los teleadictos tienen un 33-44% de probabilidades menos de ser vegetarianos estrictos. Vemos, pues, lo importante que es que los resultados de un estudio ecológico sean posteriormente investigados con otros diseños de estudios analíticos para explicarlos de manera correcta.

Solo dos aspectos más para terminar esta entrada. Primero, que me perdonen los vegetarianos, aunque sean estrictos, y, ¿por qué no?, también los que ven la tele mucho rato. Segundo, ya hemos visto que la falacia del chocolate es, en realidad, una falacia ecológica. Pero, incluso en el caso de que hubiesen sido datos de unidades de análisis individuales, hay que recordar siempre que ni correlación ni asociación son sinónimos de causalidad. Pero esa es otra historia…

¿A qué lo atribuye?

Parece que fue ayer. Yo empezaba mis andanzas en los hospitales y tenía mis primeros contactos con El Paciente. Y de enfermedades no es que supiese demasiado, por cierto, pero sabía sin necesidad de pensar en ello cuáles eran las tres preguntas con las que se iniciaba toda buena historia clínica: ¿qué le pasa?, ¿desde cuándo?, ¿a qué lo atribuye?.

Y es que la necesidad de saber el porqué de las cosas es inherente a la naturaleza humana y, por supuesto, tiene gran importancia en medicina. Todo el mundo está loco por establecer relaciones de causa-efecto, por lo que a veces estas relaciones se hacen sin mucho rigor y llega uno a creerse que el culpable de su catarro de verano es el fulano del supermercado, que ha puesto el aire acondicionado muy fuerte. Por eso es de capital importancia que los estudios sobre etiología se realicen y se valoren con rigor. Por eso, y porque cuando hablamos de causa nos referimos también a las que hacen daño, incluidas nuestras propias acciones (lo que la gente culta llama iatrogenia).

Esta es la razón de que los estudios de etiología/daño tengan diseños similares. El ideal sería el ensayo clínico, y podemos usarlo, por ejemplo, para saber si un tratamiento es la causa de la curación del paciente. Pero cuando estudiamos factores de riesgo o exposiciones nocivas, el principio ético de no maleficencia nos impide aleatorizar las exposiciones, por lo que hemos de recurrir a estudios observacionales como los estudios de cohortes o los estudios de casos y controles, aunque siempre el nivel de evidencia será menor que el de los estudios experimentales.

Para valorar críticamente un trabajo sobre etiología/daño recurriremos a nuestros consabidos pilares: validez, importancia y aplicabilidad.

En primer lugar nos centraremos en la VALIDEZ o rigor científico del trabajo, que debe responder a la pregunta sobre si el factor o la intervención que estudiamos fue la causa del efecto adverso o la enfermedad producida.

Como siempre, buscaremos unos criterios primarios de validez. Si estos no se cumplen, dejaremos el trabajo y nos dedicaremos a otra cosa más provechosa. Lo primero será determinar si se han comparado grupos similares en cuanto a otros factores determinantes del efecto diferentes de la exposición estudiada. La aleatorización de los ensayos clínicos facilita que los grupos sean homogéneos, pero no podemos contar con ella en el caso de estudios observacionales. La homogeneidad de las dos cohortes es fundamental y sin ella el estudio no tendrá validez. Uno siempre se puede defender diciendo que ha estratificado por las diferencias entre los dos grupos o que ha hecho un análisis multivariante para controlar el efecto de las variables confusoras conocidas pero, ¿qué hacemos con las desconocidas?. Lo mismo se aplica a los estudios de casos y controles, mucho más sensibles a sesgos y confusiones.

¿Se han valorado la exposición y el efecto de la misma forma en todos los grupos?. En los ensayos y cohortes debemos comprobar que el efecto ha tenido la misma probabilidad de aparecer y ser detectado en los dos grupos. Por otra parte, en los estudios de casos y controles es muy importante valorar adecuadamente la exposición previa, por lo que debemos investigar si ha habido posibles sesgos de recogida de datos, como el sesgo de memoria (los enfermos suelen acordarse mejor de sus síntomas pasados que los sanos). Por último, debemos considerar si el seguimiento ha sido lo suficientemente largo y completo. Las pérdidas durante el estudio, frecuentes en los diseños observacionales, pueden sesgar los resultados.

Si hemos contestado sí a las tres preguntas anteriores, pasamos a considerar los criterios secundarios de validez. Los resultados del estudio deben ser evaluados para determinar si la asociación entre exposición y efecto satisface las pruebas de causalidad razonable. HillUna herramienta que podemos usar son los criterios de Hill, que fue un señor que sugirió utilizar una serie de aspectos para tratar de distinguir el carácter causal o no causal de una asociación. Estos criterios son los siguientes: a) fuerza de la asociación, que es la razón de riesgos de exposición y efecto, que consideraremos en breve; b) consistencia, que es la reproducibilidad en poblaciones o situaciones diferentes; c) especificidad, que quiere decir que una causa produce un único efecto y no múltiples; d) temporalidad: es fundamental que la causa preceda al efecto; e) gradiente biológico: a más intensidad de causa, mayor intensidad de efecto; f) plausibilidad: tiene que tener su lógica según nuestros conocimientos biológicos; g) coherencia, que no entre en conflicto con lo que se sabe de la enfermedad o el efecto; h) evidencia experimental, difícil de obtener muchas veces en humanos por problemas éticos; y, finalmente, i) analogía con otras situaciones conocidas. Aunque estos criterios son ya viejecillos y alguno puede ser irrelevante (evidencia experimental o analogía) o erróneo (especificidad), pueden servirnos de orientación. El criterio de temporalidad sería necesario y se complementaría muy bien con los de gradiente biológico, plausibilidad y coherencia.

Otro aspecto importante es estudiar si, al margen de la intervención en estudio, se han tratado los dos grupos de forma similar. En este tipo de estudios en los que el doble ciego brilla por su ausencia es en los que hay más riesgo de sesgo debido a cointervenciones, sobre todo si éstas son tratamientos con un efecto mucho mayor que la exposición en estudio.

En cuanto a la IMPORTANCIA de los resultados, debemos considerar la magnitud y la precisión de la asociación entre exposición y efecto.

¿Cuál fue la fuerza de la asociación?. La medida de asociación más habitual es el riesgo relativo (RR), que podremos usar en los ensayos y en los estudios de cohortes. Sin embargo, en los estudios de casos y controles desconocemos la incidencia del efecto (ya se ha producido al realizarse el estudio), por lo que utilizamos la odds ratio (OR). Como ya sabemos, la interpretación de los dos parámetros es similar. Incluso los dos son similares cuando la frecuencia del efecto es muy baja. Sin embargo, cuánto mayor es la magnitud o la frecuencia del efecto, más diferentes son RR y OR, con la peculiaridad de que la OR tiende a sobreestimar la fuerza de la asociación cuando es mayor que 1 y a subestimarla cuando es menor que 1. De todas formas, estos caprichos de la OR excepcionalmente nos modificarán la interpretación cualitativa de los resultados.

Hay que tener en cuenta que en un ensayo es válido cualquier valor de OR o RR cuyo intervalo de confianza no incluya el uno, pero en estudios observacionales hay que ser un poco más exigente. Así, en un estudio de cohortes daremos valor a RR mayores o iguales a tres y, en uno de casos y controles, a OR de cuatro o más.

Otro parámetro muy útil (en ensayos y cohortes) es la diferencia de riesgos o diferencia de incidencias, que es una forma rebuscada de llamar a nuestra conocida reducción absoluta de riesgo (RAR), que nos permite calcular el NNT (o NND, número necesario a dañar), parámetro que mejor nos cuantifica la importancia clínica de la asociación. También, similar a la reducción relativa del riesgo (RRR), contamos con la fracción atribuible en los expuestos, que es el porcentaje de riesgo observado en los expuestos que se debe a la exposición.

Y, ¿cuál es la precisión de los resultados?. Como ya sabemos, tiraremos de nuestros queridos intervalos de confianza, que nos servirán para determinar la precisión de la estimación del parámetro en la población. Siempre es conveniente disponer de todos estos parámetros, por lo que deben figurar en el estudio o debe ser posible su cálculo a partir de los datos proporcionados por los autores.

Para finalizar, nos fijaremos en la APLICABILIDAD de los resultados en nuestra práctica.

¿Son aplicables los resultados a nuestros pacientes?. Buscaremos si hay diferencias que desaconsejen extrapolar los resultados del trabajo a nuestro medio. Además, consideraremos cuál es la magnitud del riesgo en nuestros pacientes en función de los resultados del estudio y de las características del paciente en quien queramos aplicarlos. Y, finalmente, teniendo todos estos datos en mente, habrá que pensar en nuestras condiciones de trabajo, las alternativas que tenemos y las preferencias del paciente para decidir si hay que evitar la exposición que se ha estudiado. Por ejemplo, si la magnitud del riesgo es alta y disponemos de una alternativa eficaz la decisión está clara, pero las cosas no siempre serán tan sencillas.

Como siempre, os aconsejo que utilicéis los recursos CASPe para valorar los trabajos, tanto las parrillas adecuadas a cada diseño para hacer la lectura crítica, como las calculadoras para valorar la importancia de los resultados.

Antes de acabar, dejadme aclarar una cosa. Aunque hemos comentado que en las cohortes y ensayos usamos RR y en los casos y controles usamos OR, podemos usar OR en cualquier tipo de estudio (no así RR, para los cuáles hay que conocer la incidencia del efecto). El problema es que son algo menos precisas, por lo que se prefieren los RR y los NNT, cuando es posible utilizarlos. De todas formas, la OR es cada vez más popular por otro motivo, y es su utilización en los modelos de regresión logística, que nos permiten obtener estimadores ajustados por las diferentes variables de confusión. Pero esa es otra historia…

De la gallina al huevo

Seguro que alguna persona que rebosaba ingenio a raudales os ha preguntado en alguna ocasión, con mirada de suficiencia, ¿qué fue antes, el huevo o la gallina?. Pues bien, la próxima vez que os encontréis con alguien así podéis responder con otra pregunta: ¿es qué tienen algo que ver el huevo y la gallina?. Porque primero habrá que saber, no solo si para tener gallinas hay primero que tener huevos (con perdón), sino también qué probabilidad hay de acabar teniéndolas, con huevos o sin ellos (alguna mente retorcida dirá que la pregunta se podría plantear al revés, pero es que yo soy de los que piensan que lo primero que hay que tener, sin ánimo de ofender, son huevos).

Este planteamiento nos llevaría al diseño de un estudio de casos y controles, que es un estudio observacional, analítico y longitudinal en el que se comparan un grupo que presenta un efecto o enfermedad determinada (los casos) con otro grupo que no lo presenta (los controles), con el objetivo de determinar si existe diferencia en la frecuencia de exposición a un determinado factor de riesgo entre los dos grupos. Como en el punto de partida el efecto ya se ha producido, la mayor parte de los estudios de casos y controles son restrospectivos, aunque también podrían diseñarse estudios prospectivos.

Los estudios de casos y controles son muy utilizados en epidemiología. Son relativamente sencillos de hacer, generalmente tienen menor coste que otros estudios observacionales (como los estudios de cohortes), permiten estudiar varios factores de exposición al mismo tiempo y saber cómo interactúan entre ellos y son ideales para enfermedades o factores de exposición de frecuencia muy baja. El problema de este tipo de diseño es que hay que ser sumamente cuidadoso para seleccionar los casos y los controles, ya que es muy fácil caer en una lista de sesgos que, a día de hoy, no tiene aún un final conocido.

En general, los criterios de selección deberían ser los mismos para casos y controles, pero, como para ser caso hay que estar diagnosticado de la enfermedad y estar disponible para el estudio, es muy probable que los casos no sean totalmente representativos de la población. Por ejemplo, si los criterios de diagnóstico son poco sensibles y específicos habrá muchos falsos positivos y negativos, con lo que el efecto de la exposición al factor se diluirá.

Otro posible problema depende de que elijamos casos incidentes (de nuevo diagnóstico) o prevalentes. Los estudios basados en prevalencia favorecen la selección de supervivientes (hasta ahora no se conoce ningún caso de un muerto que haya accedido a participar en ningún estudio) y, si la supervivencia está relacionada con la exposición, el riesgo detectado será menor que con casos incidentes. Este efecto es todavía más evidente cuando el factor de exposición es de buen pronóstico, situación en la que los estudios prevalentes producen una mayor sobreestimación de la asociación. Un ejemplo para comprender mejor estos aspectos:  supongamos que el riesgo de infarto es mayor cuánto más se fuma. Si solo incluimos casos prevalentes excluiremos a los muertos por infarto más grave, que presumiblemente deberían ser los que más fumasen, con lo cuál el efecto del tabaco podría infraestimarse.

Pero si lo de los casos parece complicado, no es nada comparado con una buena selección de los controles. Lo ideal es que los controles hayan tenido la misma probabilidad de exposición que los casos o, dicho de otra forma más elegante, deben ser representativos de la población de la que proceden los casos. Además, esto hay que compatibilizarlo con la exclusión de aquéllos que tengan alguna enfermedad que se relacione de forma positiva o negativa con el factor de exposición. Por ejemplo, si nos sobra tiempo y queremos ver la asociación entre pasajeros de avión que tienen una tromboflebitis y la ingesta previa de aspirina, tendremos que excluir de los controles a los que tengan cualquier otra enfermedad que se trate con aspirina, aunque no la hubiesen tomado antes de emprender el viaje.

También hay que ser crítico con algunos hábitos de selección de controles. Por ejemplo, los pacientes que van al hospital por otro motivo distinto al estudiado están muy a mano, suelen ser muy colaboradores y, al ser enfermos, seguramente recordarán mejor las exposiciones pasadas a factores de riesgo. Pero el problema es ese, que son enfermos, por lo que pueden tener hábitos de exposición a factores de riesgo diferentes a los de la población general.

Otro recurso es reclutar a vecinos, amigos, familiares, etc. Éstos suelen ser muy comparables y colaboradores, pero tenemos el riesgo de que haya emparejamiento de hábitos de exposición que nos alteren los resultados del estudio. Todos estos problemas se evitan tomando los controles de la población general, pero esto es más costoso en esfuerzo y dinero, suelen ser menos colaboradores y, sobre todo, mucho más olvidadizos (los sanos recuerdan menos la exposición a factores de riesgo pasados), con lo que la calidad de la información que obtengamos de casos y controles puede ser muy diferente.

Como puede deducirse de su diseño, los estudios de casos y controles no proporcionan una estimación directa ni de la incidencia ni de la prevalencia de la enfermedad, ya que la proporción de expuestos y enfermos viene determinada por los criterios del investigador y no por la incidencia en la población. Por este motivo la medida de asociación de los estudios de casos y controles es la odds ratio y no el riesgo relativo que usamos en los estudios de cohortes.

De todos modos, y solo para los que gusten de meterse en complicaciones, es posible calcular las tasas de incidencia a partir de los resultados de un estudio de casos y controles si conocemos previamente la incidencia de la enfermedad en la población (obtenida de otro tipo de estudios), utilizando para ellos las formulitas que os adjunto.

Un par de reflexiones para terminar con este tema tan ameno. La primera es una consideración sobre los estudios de casos y controles que comparten con el resto de los estudios observacionales: detectan la asociación entre la exposición y el efecto, pero no nos permiten establecer con seguridad relaciones de causalidad, para lo cual necesitamos otro tipo de estudios. La segunda, hay que recordar siempre que son los que con más facilidad están sometidos a sesgos de múltiples tipos que hay que analizar y considerar, pero esa es otra historia…

La de nombre extranjero

¿Os gusta el juego?. Me refiero a los juegos de azar que la gente busca en los casinos con la vana esperanza de ganar un poco (o no tan poco) de dinero a la vez que se divierte. Pero la gente que desea enriquecerse de forma rápida y divertida olvida dos cosas. La primera es que todo lo que ve alrededor (y mucho más que no ve) lo pagan los miles que previamente fracasaron en un intento similar al suyo. La segunda es estudiar antes a fondo cuáles son sus probabilidades de ganar… y sus odds.

Os preguntaréis qué es una odds y por qué usamos un término tan raro. A la segunda pregunta os diré que no he encontrado una palabra castellana que guste a la mayoría. Quizás las que más me gustan a mí sean “oportunidad relativa” o “probabilidad relativa”, pero para seguir la corriente general, me quedaré con odds. Para contestar a la primera pregunta tenemos que calentarnos un poco las neuronas.

Todos entendemos el concepto de probabilidad. Si nos preguntan cuál es la probabilidad de sacar un seis si tiramos un dado en el casino, responderemos rápidamente que la probabilidad es una entre seis o 1/6 (0,16 ó 16,66%). Pero al jugador quizás le interese más saber cuánto es más probable que salga el seis frente a que no salga. Y la respuesta no es 1/6, sino 1/5. ¿Por qué?: porque la probabilidad de que salga es 1/6 y la de que no salga es 5/6. Para saber cuánto más probable es sacar el seis debemos dividir 1/6 entre 5/6, lo que nos daría 1/5 (20%). Esta es la odds: la probabilidad de que ocurra un suceso respecto a la probabilidad de que no ocurra: odds = p / (1-p), para los amantes de las fórmulas.

Salgamos ahora del casino. He observado que la noche que echo una mirada a las noticias en Internet antes de acostarme duermo peor. Supongamos que hago una encuesta preguntando a la gente que me encuentro por la calle si duermen bien y si acostumbran a ver las noticias antes de acostarse y obtengo los resultados que os muestro en la tabla.

Podemos preguntarnos ¿cuál es la probabilidad de que alguien que lea las noticias sea insomne?. Fácil: 25/79 ó 0,31 (número de lectores insomnes dividido por número de lectores). Por otra parte, ¿cuál es la odds del lector de ser insomne?. También sencillo: probabilidad de lector insomne partido de probabilidad de lector no insomne, o sea 25/54 ó 0,46.

Calculamos igualmente la probabilidad de que un no lector sea insomne como el cociente 105/355 = 0,29 (no lectores insomnes dividido por el total de no lectores). La odds, por su parte, sería de 105/250 = 0,42 (no lectores con insomnio dividido por no lectores sin insomnio).

Si calculamos ahora el cociente de las dos probabilidades obtendremos el riesgo relativo, RR = 0,31/0,29 = 1.06. Esto quiere decir que el riesgo de tener insomnio es más o menos el mismo entre los que leen las noticias y los que no. Si calculamos el cociente de las dos odds obtendremos un valor de 1,09 (0,46/0,42). Esta es la denominada odds ratio (OR), un parámetro bastante interesante que, en breve, veremos para qué sirve.

Vamos ahora a analizar de nuevo los datos de la tabla, pero esta vez al revés. ¿Cuál es la probabilidad de que un insomne lea las noticias?: 25/130 = 0,19. ¿Cuál es la odds del insomne de leer frente a no leer las noticias?: 25/105 = 0,23. ¿Cuál es la probabilidad de que el que no tiene insomnio sea lector?: 54/304 = 0,17. ¿Y su odds?: 54/250 = 0,21.

Si calculamos el RR = 0,19/0,17 = 1,11, nos dirá que los insomnes tienen el mismo riesgo, aproximadamente, de haber leído las noticias antes de acostarse que los que duermen plácidamente. ¿Y la OR?: 0,23/0,58 = 1,09. ¡Pásmate!, la OR es la misma se miren los datos como se miren, lo cual no puede ser casualidad, sino que debe esconder algún significado.

Y esto es así porque la OR, también llamada razón de predominio, mide la fuerza de la asociación entre el efecto (el insomnio) y la exposición (leer las noticias). Su valor es siempre el mismo aunque cambiemos el orden de las proporciones en la tabla. Como ocurre con otros parámetros, lo correcto será calcular su intervalo de confianza para conocer la precisión de la estimación. Además, esta asociación será significativa si el intervalo no incluye el uno, que es el valor neutro para la OR. Cuánto mayor sea la OR, mayor será la fuerza de la asociación. Las OR menores de uno son más complejas de interpretar, aunque podemos hacer un razonamiento similar al que hacíamos con los RR menores que uno. Pero aquí acaba la similitud entre los dos. El uso correcto del RR precisa del conocimiento de la incidencia del efecto en las dos poblaciones comparadas mientras que la OR se calcula en base a la frecuencia observada en las dos, por lo que no son parámetros equiparables aunque su interpretación sea similar. Solo tienden a igualarse en los casos en los que el efecto tiene una probabilidad muy baja de presentarse. Por estos motivos, la OR es la medida de asociación utilizada en estudios de casos y controles y metaanálisis, mientras que los RR son preferible para los estudios de cohortes y los ensayos clínicos.

Un par de consideraciones antes de acabar con el tema de la OR. Primera, aunque nos permita comparar la asociación entre dos variables cualitativas (categorizadas como sí o no), no sirve para establecer relaciones de causa-efecto entre las dos. Segunda, tiene gran utilidad porque permite evaluar el efecto de otras variables sobre esta asociación, lo que puede servir para planificar la realización de estudios estadísticos de regresión logística. Pero esa es otra historia…