Ciencia sin seso… locura doble

Píldoras sobre medicina basada en pruebas

Entradas etiquetadasPrevalencia
image_pdf

De huevos y castañas

En muchas ocasiones nos encontramos con cosas que la gente se empeña en mezclar y confundir a pesar de que son manifiestamente diferentes. Es entonces cuando solemos recurrir al refrán y decir que se parecen como un huevo a una castaña, lo que en realidad quiere decir que son claramente dispares.

Pues bien, en epidemiología tenemos un claro ejemplo de huevos y castañas en el caso de los tipos de medidas de frecuencia más utilizadas. Y me estoy refiriendo al lío que nos formamos con los términos razón, proporción y tasa.

Aunque las tres son cosas bien distintas, hay mucha tendencia a confundir unas con otras, y no solo entre aficionados: existen ejemplos en los libros de epidemiología de tasas que no lo son, de razones que son proporciones y de lo que queramos imaginar.

Vamos a verlas una a una y veremos cómo, en realidad, se parecen como un huevo a una castaña.

Entrando en materia, diremos que una razón representa la magnitud relativa de dos cantidades de dos variables cualesquiera. Se calcula dividiendo una de las magnitudes (numerador) entre la otra (denominador), de tal forma que compara las dos. La clave en la razón es que numerador y denominador no tienen por qué estar relacionados. Ni siquiera tienen que ser de la misma categoría de cosas. Podemos comparar huevos con castañas o huevos con personas que tienen un piso en Albacete (perdonadme si no se me ocurre un ejemplo en el que esta comparación pueda ser de utilidad).

Las razones pueden usarse con fines descriptivos o analíticos. Con fines descriptivos pueden compararse los hombres/mujeres que participan en un estudio, o la razón de casos y controles, etc. Con fines analíticos pueden servir para estudiar la enfermedad entre casos y controles, la mortalidad entre dos grupos, etc. Los ejemplos típicos de razón son el riesgo relativo y la odds ratio o razón de prevalencia.

Por otra parte, una proporción es la comparación de una parte respecto a un todo y puede expresarse como una fracción, un número decimal o un porcentaje. Por definición, el numerador debe estar incluido en el denominador. Por ejemplo, el número de obesos que juran que comen poquito dividido por el número total de obesos nos dará la proporción de obesos que juran comer poquito (que suele ser llamativamente más alta de lo esperable). Si la multiplicamos por cien, obtendremos el porcentaje.

La proporción representa también la probabilidad de que un suceso ocurra, por lo que sus valores oscilan de cero a uno, o de cero a cien si empleamos porcentajes. Un ejemplo sería el de la incidencia, que representa el riesgo de enfermar en una población en un periodo de tiempo dado.

Una proporción puede convertirse en una razón. Solo hay que restar el numerador del denominador y volver a dividir. Por ejemplo, si en un estudio participan 35 hombres y 25 mujeres, la proporción de participantes varones sería de 35/60 = 0,58. Pero si queremos saber la razón de hombres a mujeres sería de 35/(60-35) = 1,4.

El tercer concepto en discordia es el de tasa. Una tasa es una medida de la frecuencia con la que ocurre un evento en una población específica durante un periodo de tiempo determinado. Al basarse la medida en la frecuencia según el tamaño de la población, las tasas son muy útiles para comparar frecuencias de eventos en diferentes momentos, localizaciones, etc., al igual que entre poblaciones de distinto tamaño.

Quiero llamaros aquí la atención sobre la frecuentemente mal llamada tasa de prevalencia. La prevalencia mide el número de individuos de una población que presentan la enfermedad en un momento dado. Pero, si lo pensáis, los enfermos (numerador) están incluidos en el denominador, así que la prevalencia en realidad es una proporción y no una tasa.

Ejemplos de tasas reales serían las tasa de mortalidad infantil, de mortalidad específica, la tasa cruda de natalidad, etc.

Y con esto terminamos por hoy. No quiero liar más la cosa con otros indicadores epidemiológicos relacionados y de nombre parecido. Porque hay más, como la proporción de incidencia, la tasa de incidencia, etc. Pero esa es otra historia…

La tabla

Existen gran cantidad de tablas. Y tienen un gran papel a lo largo de nuestra vida. Quizás la que primero nos asalta en nuestra más tierna infancia es la tabla de multiplicar. ¿Quién no recuerda con nostalgia, al menos los más mayorcitos, como  repetíamos como loros aquello del dos por uno es dos, dos por… hasta que lo aprendíamos de memoria?. Pero no hicimos más que dominar las múltiples tablas de multiplicar cuando nos topamos con la tabla periódica de los elementos. Otra vez a aprender de memoria, esta vez ayudados de reglas nemotécnicas imposiblemente idiotas sobre Indios que Ganaban Buena Altura y no sé qué.

Pero es con los años cuando llega una de las peores de todas: la tabla de composición de alimentos, con su celda llena de calorías. Esta tabla nos persigue hasta en sueños. Y todo porque comer mucho tiene gran número de inconvenientes, demostrados la mayor parte de ellos gracias a la ayuda de otro tipo de tabla: la tabla de contingencia.

Las tablas de contingencia son usadas muy frecuentemente en Epidemiología para analizar la relación entre dos o más variables. Están formadas por filas y columnas. En las filas se suelen colocar los grupos por nivel de exposición al factor de estudio y en las columnas las diferentes categorías que tienen que ver con el estado de enfermedad o daño que investigamos. Filas y columnas se cruzan para formar celdas donde se representa la frecuencia de esa determinada combinación de variables.

Lo más habitual es que se representen dos variables (nuestra querida tabla 2×2), una dependiente y otra independiente, pero esto no siempre es así. Puede haber más de dos variables y, en ocasiones, puede no existir una dirección de dependencia entre las variables antes de realizar el análisis.

Las tablas 2×2 simples permiten analizar la relación entre dos variables dicotómicas. Según su contenido y el diseño del estudio al que pertenezcan, sus celdas pueden tener significados ligeramente diferentes, lo mismo que ocurre con las medidas que podemos calcular a partir de los datos de la tabla.

contingencia_transversalLas primeras serían las tablas de estudios transversales. En este tipo de estudios se representa una especie de foto fija de nuestra muestra que nos permite estudiar la relación entre las variables. Son, pues, estudios de prevalencia y, aunque los datos se recojan a lo largo de un periodo de tiempo, los resultados representan esa foto fija a la que ya nos hemos referido. En las columnas se coloca la variable dependiente (enfermedad o daño producido) y en las filas la independiente (el grado de exposición), con lo que podemos calcular una serie de medidas de frecuencia, de asociación y de significación estadística.

Las medidas de frecuencia son la prevalencia de enfermedad entre expuestos (EXP) y no expuestos (NEXP) y la prevalencia de exposición entre enfermos (ENF) y no enfermos (NENF). Estas prevalencias representan el número de personas enfermas, sanas, expuestas y no expuestas en relación con el total de cada grupo, por lo que son tasas estimadas en un momento puntual.

Las medidas de asociación son las razones de las prevalencias que acabamos de mencionar según enfermedad y exposición y la odds ratio, que nos dice cuánto más probable es que se produzca la enfermedad respecto a que no se produzca en EXP frente a NEXP. Un valor de estas medidas mayor de uno indica que el factor es de riesgo para que se produzca la enfermedad. Si vale de cero a uno querrá decir que el factor es de protección. Y si vale uno, pues que ni carne ni pescado.

Por último, como en todos los tipos de tablas que vamos a mencionar, se pueden calcular medidas de asociación estadística, fundamentalmente la chi-cuadrado con o sin corrección, la prueba exacta de Fisher y el valor de la p, uni o bilateral.

Muy parecidas a estas que hemos visto son las tablas de los estudios de casos y controles. En estos se trata de ver si diferentes grados de la exposición explican diferentes grados de enfermedad. En la columnas se colocan los casos y los controles y en las filas los EXP y NEXP.

contingencia_casos_controlesLas medidas de frecuencia que podemos calcular son la proporción de casos expuestos (respecto al total de casos) y la proporción de controles expuestos (respecto al total de controles). Lógicamente, podemos calcular también las proporciones de NEXP calculando los complementarios de los anteriores.

La medida de asociación fundamental es la odds ratio, que ya conocemos y en la que no nos vamos a detener mucho. Ya sabéis que, de forma simplificada, podemos calcularla como el cociente de los productos cruzados de la tabla y que nos indica cuánto es más probable contraer la enfermedad en EXP que en NEXP. La otra medida sería la fracción atribuible en los expuestos (FAExp), que nos indica el número de enfermos que son debidos a la acción directa de la exposición.

Podemos, en este tipo de tablas, calcular, además, una medida de impacto: la fracción atribuible en la población (FAPob), que sería el impacto potencial que tendría sobre la población el eliminar el factor de exposición. Si es un factor de riesgo sería un impacto positivo y, a la inversa, si es protector, negativo.

Comentar que las medidas de significación estadística dependerán de que los datos sean pareados (utilizaremos la prueba de McNemar) o no pareados (chi-cuadrado, prueba exacta de Fisher y valor de p).

contingencia_cohortes_acumulada

El tercer tipo de tablas de contingencia es el que corresponde a los estudios de cohortes, aunque la estructura difiere un poco si son estudios de casos nuevos producidos durante todo el periodo de estudio (incidencia acumulada) o si consideran el periodo de tiempo del estudio, el momento de aparición de la enfermedad y el diferente seguimiento de los grupos (tasa de incidencia o densidad de incidencia).

Las tablas de los estudios de incidencia acumulada (IA) son similares a las que hemos visto hasta ahora. En las columnas se representa el estado de enfermedad y en las filas el de exposición. Por otra parte, las de densidad o tasa de incidencia (TI) representan en una de las columnas el número de enfermos y en la otra el seguimiento en personas-año, de forma que los que tienen un seguimiento más prolongado tienen un mayor peso a la hora de calcular las medidas de frecuencia, asociación, etc.

contingencia_cohortes_densidadLas medidas de frecuencia serían los riesgos en EXP (Re) y en NEXP (Ro) para los casos de IA y las tasas de incidencia en EXP (TIe) y NEXP (TIo) en los de TI.

Los cocientes de las medidas anteriores nos permiten calcular las medidas de asociación: riesgos relativos (RR), reducción absoluta de riesgo (RAR) y reducción relativa de riesgo (RRR) para los estudios de IA y reducciones absolutas y relativas de las TI para los estudios de densidad. Podemos calcular también la FAExp como hacíamos con los estudios de casos y controles, al igual que la FAPob como medida de impacto.

En teoría pueden calcularse también las odds ratios, pero suelen ser menos utilizadas en este tipo de tablas. En cualquier caso, ya sabemos que odds ratio y RR se parecerán cuando la prevalencia de la enfermedad sea baja.

Para terminar con este tipo de tablas, podemos calcular las medidas de asociación estadística: chi-cuadrado, Fisher y p para estudios de IA y otras pruebas de asociación para los estudios de densidad de incidencia.

Como siempre, todos estos cálculos pueden realizarse a mano, aunque os recomiendo utilizar calculadoras, como la disponible en la Red CASPe. Es más sencillo, más rápido y, además, nos proporcionan todos estos parámetros con sus correspondientes intervalos de confianza, con lo que podemos estimar también su precisión.

Y con esto hemos llegado al final. Existen más tipos de tablas, con múltiples niveles por tratar más de dos variables, estratificadas según diferentes factores, etc. Pero esa es otra historia…

El cribado imperfecto

Nadie es perfecto. Es un hecho. Y un consuelo también. Porque el problema no es ser imperfecto, que es algo inevitable. El verdadero problema estriba en creerse perfecto, en ser ignorante de las propias limitaciones. Y lo mismo ocurre con otras muchas cosas, como las pruebas diagnósticas que utilizamos en medicina.

Aunque lo de las pruebas diagnósticas tiene mucho más delito porque, más allá de su imperfección, se permiten tratar de forma diferente a sanos y enfermos. ¿No me creéis?. Vamos a hacer unas reflexiones.

Venn_DcoPara empezar, echad un vistazo al diagrama de Venn que os he dibujado. ¡Qué recuerdos de infancia me traen estos diagramas!. El cuadrado simboliza nuestra población en cuestión. De la diagonal para arriba están los enfermos (ENF) y de la diagonal para abajo los sanos (SAN), con lo que cada área representa la probabilidad de estar SAN o ENF. El área del cuadrado, obviamente, vale 1: es seguro que uno está o enfermo o sano, situaciones mutuamente excluyentes. La elipse engloba a los sujetos a los que realizamos la prueba diagnóstica y obtenemos un resultado positivo (POS). En un mundo perfecto, toda la elipse estaría por encima de la diagonal, pero en el mundo imperfecto real la elipse está cruzada por la diagonal, con lo que los resultados POS pueden ser verdaderos (VP) o falsos (FP), estos últimos cuando se obtienen en sanos. La superficie fuera de la elipse serían los resultados negativos (NEG) que, como podéis ver, también se dividen en verdaderos y falsos (VN, FN).

Ahora traslademos esto a la típica tabla de contingencia que definiría las probabilidades de las diferentes opciones y pensemos en una situación en la que todavía no hemos realizado la prueba. En este caso, las columnas condicionan las probabilidades de los sucesos de las filas. Por ejemplo, la casilla superior izquierda representa la probabilidad de obtener POS en los ENF (una vez que uno está enfermo, ¿qué probabilidad hay de obtener un resultado positivo?), lo que denominamos sensibilidad (SEN). Por su parte, la inferior derecha representa la probabilidad de obtener un NEG en un SAN, lo que llamamos especificidad (ESP). El total de la primera columna representa la probabilidad de estar enfermo, que no es más que la prevalencia (PRV) y, así, podemos discernir qué significado tiene la probabilidad de cada celda. Esta tabla nos proporciona dos características de la prueba, SEN y ESP, que, como sabemos, son intrínsecas a la prueba siempre que se realice en unas condiciones similares, aunque las poblaciones sean diferentes.

Prob_pre_post_DCO
¿Y qué pasa con la tabla de contingencia una vez que hemos realizado la prueba?. Se produce un cambio sutil, pero muy importante: ahora son las filas las que condicionan las probabilidades de los sucesos de las columnas. Los totales de la tabla no cambian pero fijaos que, ahora, la primera celda representa la probabilidad de estar ENF una vez que se ha dado POS (cuando da positivo, ¿qué probabilidad hay de que realmente esté enfermo?) y esto ya no es la SEN, sino el valor predictivo positivo (VPP). Lo mismo ocurre con la celda inferior derecha, que ahora representa la probabilidad de estar SAN una vez que se obtiene un NEG: valor predictivo negativo (VPN).

Vemos, pues, que antes de realizar la prueba conoceremos habitualmente su SEN y ESP, mientras que una vez realizada, lo que obtendremos será sus valores predictivos positivo y negativo, quedando estas cuatro características de la prueba ligadas para siempre entre sí gracias a la magia del teorema de Bayes. Claro que, en el caso del VPP y VPN hay un quinto en discordia: la prevalencia. Ya sabemos que los valores predictivos varían en función de la PRV de la enfermedad en la población, aunque se mantengan sin cambios la SEN y ESP de la prueba.

Y todo esto tiene su traducción práctica. Vamos a inventarnos un ejemplo para liarlo todo un poco más. cribado_imperfectoSupongamos que tenemos una población de un millón de habitantes a la que realizamos un cribado de fildulastrosis. Sabemos, por estudios previos, que la prueba tiene una SEN de 0,66 y una ESP de 0,96, y que la prevalencia de fildulastrosis es de 0,0001 (1 por cada 10.000), enfermedad rara que os aconsejo no os molestéis en buscar, por si a alguien se le ha ocurrido.

Sabiendo la PREV es fácil calcular que en nuestra población hay 100 ENF. De éstos, 66 darán POS (SEN=0,66) y 34 darán NEG. Por otra parte, habrá 990.900 sanos, de los que el 96% (959.904) darán NEG (ESP=0,96) y el resto (39.996) darán POS. En resumen, que obtendremos 40.062 POS, de los cuales 39.996 serán FP. Que nadie se asuste del alto número de falsos positivos. Esto es debido a que hemos elegido una enfermedad muy rara, por lo que hay muchos FP a pesar de que la ESP sea bastante alta. Pensad que, en la vida real, habría que hacer pruebas de confirmación a todos estos sujetos para acabar confirmando el diagnóstico solo en 66 personas. Por eso es tan importante pensar bien si merece la pena hacer un cribado antes de ponerse a buscar enfermedades en la población. Por eso, y por otras razones.

Ya podemos calcular los valores predictivos. El VPP será el cociente entre POS verdaderos y el total de POS: 66/40.062 = 0,0016. O sea, que habrá un enfermo por cada 1.500 positivos, más o menos. De manera similar, el VPN será el cociente entre NEG verdaderos y NEG totales: 959.904/959.938 = 0,99. Como era de esperar, dada la alta ESP de la prueba, un resultado negativo hace altamente improbable que uno esté enfermo.

¿Qué os parece?. ¿Es útil la prueba como herramienta de cribado poblacional con ese número de falsos positivos y un VPP de 0,0016?. Pues, aunque pueda parecer raro, si lo pensamos un momento, no es tan mala. La probabilidad preprueba de estar ENF es 0,0001 (la PRV). La probabilidad postprueba es 0,0016 (el VPP). Luego su cociente tiene un valor de 0,0016/0,0001 = 16, lo que quiere decir que hemos multiplicado por 16 nuestra capacidad de detectar al enfermo. La prueba, pues, no parece tan mala, aunque habrá que tener en cuenta otros muchos factores antes de ponernos a cribar.

Todo esto que hemos visto hasta ahora tiene una aplicación práctica adicional. Supongamos que solo conocemos SEN y ESP, pero desconocemos la PRV de la enfermedad en la población que hemos cribado. ¿Podemos estimarla a partir de los resultados de la prueba de cribado?. La respuesta es, claro está, que sí.

Imaginemos de nuevo nuestra población de un millón de sujetos. Les hacemos la prueba y obtenemos 40.062 positivos. El problema aquí radica en que parte de estos (la mayoría) son FP. Además, no sabemos cuántos enfermos han dado negativo (FN). ¿Cómo podemos conocer entonces el número de enfermos de la población?. Pensando un poco.

Ya hemos dicho que el número de enfermos será igual al número de positivos menos los FP más los FN:

Nº enfermos = POS totales – número de FP + número de FN

Los POS los tenemos: 40.062. Los FP serán aquéllos sanos (1-PRV) que den positivo siendo sanos (los sanos que no dan negativo: 1-ESP). Luego el número total de FP será:

FP = (1-PRV)(1-EPS) x n (1 millón, el tamaño de la población).

Por último, los FN serán los enfermos (PRV) que no den positivo (1-SEN). Luego el número total de FN será:

FN = PRV(1-SEN) x n (1 millón, el tamaño de nuestra población).

Si sustituimos los totales de FP y FN en la primera ecuación por los valores que acabamos de deducir, podremos despejar la PRV, obteniendo la fórmula siguiente:

 PRV= \frac{\frac{POS}{n}-(1-ESP)}{SEN - (1-ESP)}

Ya podemos calcular la prevalencia en nuestra población:

 PRV= \frac{\frac{40.062}{1.000.000}-(1-0,96)}{0,66 - (1-0,96)}= \frac{0,040062 - 0,04}{0,66 -0,04}= \frac{0,000062}{0,062}= 0,0001 (1 \ por\ cada\ 10.000)

Bueno, creo que se me acaba de fundir un lóbulo, así que vamos a tener que dejarlo aquí. Una vez más hemos contemplado la magia y el poder de los números y hemos visto cómo podemos hacer trabajar a nuestro favor las imperfecciones de nuestras herramientas. Podríamos, incluso, ir un poco más allá y calcular la precisión de la estimación que hemos realizado. Pero esa es otra historia…

De la gallina al huevo

Seguro que alguna persona que rebosaba ingenio a raudales os ha preguntado en alguna ocasión, con mirada de suficiencia, ¿qué fue antes, el huevo o la gallina?. Pues bien, la próxima vez que os encontréis con alguien así podéis responder con otra pregunta: ¿es qué tienen algo que ver el huevo y la gallina?. Porque primero habrá que saber, no solo si para tener gallinas hay primero que tener huevos (con perdón), sino también qué probabilidad hay de acabar teniéndolas, con huevos o sin ellos (alguna mente retorcida dirá que la pregunta se podría plantear al revés, pero es que yo soy de los que piensan que lo primero que hay que tener, sin ánimo de ofender, son huevos).

Este planteamiento nos llevaría al diseño de un estudio de casos y controles, que es un estudio observacional, analítico y longitudinal en el que se comparan un grupo que presenta un efecto o enfermedad determinada (los casos) con otro grupo que no lo presenta (los controles), con el objetivo de determinar si existe diferencia en la frecuencia de exposición a un determinado factor de riesgo entre los dos grupos. Como en el punto de partida el efecto ya se ha producido, la mayor parte de los estudios de casos y controles son restrospectivos, aunque también podrían diseñarse estudios prospectivos.

Los estudios de casos y controles son muy utilizados en epidemiología. Son relativamente sencillos de hacer, generalmente tienen menor coste que otros estudios observacionales (como los estudios de cohortes), permiten estudiar varios factores de exposición al mismo tiempo y saber cómo interactúan entre ellos y son ideales para enfermedades o factores de exposición de frecuencia muy baja. El problema de este tipo de diseño es que hay que ser sumamente cuidadoso para seleccionar los casos y los controles, ya que es muy fácil caer en una lista de sesgos que, a día de hoy, no tiene aún un final conocido.

En general, los criterios de selección deberían ser los mismos para casos y controles, pero, como para ser caso hay que estar diagnosticado de la enfermedad y estar disponible para el estudio, es muy probable que los casos no sean totalmente representativos de la población. Por ejemplo, si los criterios de diagnóstico son poco sensibles y específicos habrá muchos falsos positivos y negativos, con lo que el efecto de la exposición al factor se diluirá.

Otro posible problema depende de que elijamos casos incidentes (de nuevo diagnóstico) o prevalentes. Los estudios basados en prevalencia favorecen la selección de supervivientes (hasta ahora no se conoce ningún caso de un muerto que haya accedido a participar en ningún estudio) y, si la supervivencia está relacionada con la exposición, el riesgo detectado será menor que con casos incidentes. Este efecto es todavía más evidente cuando el factor de exposición es de buen pronóstico, situación en la que los estudios prevalentes producen una mayor sobreestimación de la asociación. Un ejemplo para comprender mejor estos aspectos:  supongamos que el riesgo de infarto es mayor cuánto más se fuma. Si solo incluimos casos prevalentes excluiremos a los muertos por infarto más grave, que presumiblemente deberían ser los que más fumasen, con lo cuál el efecto del tabaco podría infraestimarse.

Pero si lo de los casos parece complicado, no es nada comparado con una buena selección de los controles. Lo ideal es que los controles hayan tenido la misma probabilidad de exposición que los casos o, dicho de otra forma más elegante, deben ser representativos de la población de la que proceden los casos. Además, esto hay que compatibilizarlo con la exclusión de aquéllos que tengan alguna enfermedad que se relacione de forma positiva o negativa con el factor de exposición. Por ejemplo, si nos sobra tiempo y queremos ver la asociación entre pasajeros de avión que tienen una tromboflebitis y la ingesta previa de aspirina, tendremos que excluir de los controles a los que tengan cualquier otra enfermedad que se trate con aspirina, aunque no la hubiesen tomado antes de emprender el viaje.

También hay que ser crítico con algunos hábitos de selección de controles. Por ejemplo, los pacientes que van al hospital por otro motivo distinto al estudiado están muy a mano, suelen ser muy colaboradores y, al ser enfermos, seguramente recordarán mejor las exposiciones pasadas a factores de riesgo. Pero el problema es ese, que son enfermos, por lo que pueden tener hábitos de exposición a factores de riesgo diferentes a los de la población general.

Otro recurso es reclutar a vecinos, amigos, familiares, etc. Éstos suelen ser muy comparables y colaboradores, pero tenemos el riesgo de que haya emparejamiento de hábitos de exposición que nos alteren los resultados del estudio. Todos estos problemas se evitan tomando los controles de la población general, pero esto es más costoso en esfuerzo y dinero, suelen ser menos colaboradores y, sobre todo, mucho más olvidadizos (los sanos recuerdan menos la exposición a factores de riesgo pasados), con lo que la calidad de la información que obtengamos de casos y controles puede ser muy diferente.

Como puede deducirse de su diseño, los estudios de casos y controles no proporcionan una estimación directa ni de la incidencia ni de la prevalencia de la enfermedad, ya que la proporción de expuestos y enfermos viene determinada por los criterios del investigador y no por la incidencia en la población. Por este motivo la medida de asociación de los estudios de casos y controles es la odds ratio y no el riesgo relativo que usamos en los estudios de cohortes.

De todos modos, y solo para los que gusten de meterse en complicaciones, es posible calcular las tasas de incidencia a partir de los resultados de un estudio de casos y controles si conocemos previamente la incidencia de la enfermedad en la población (obtenida de otro tipo de estudios), utilizando para ellos las formulitas que os adjunto.

Un par de reflexiones para terminar con este tema tan ameno. La primera es una consideración sobre los estudios de casos y controles que comparten con el resto de los estudios observacionales: detectan la asociación entre la exposición y el efecto, pero no nos permiten establecer con seguridad relaciones de causalidad, para lo cual necesitamos otro tipo de estudios. La segunda, hay que recordar siempre que son los que con más facilidad están sometidos a sesgos de múltiples tipos que hay que analizar y considerar, pero esa es otra historia…