Ciencia sin seso… locura doble

Píldoras sobre medicina basada en pruebas

Entradas etiquetadasProbabilidad condicionada
image_pdf

Un caso de probabilidad engañosa

Hoy vamos a ver otro de esos ejemplos en los que la intuición sobre el valor de determinadas probabilidades nos juega malas pasadas. Y, para ello, vamos a utilizar nada menos que el teorema de Bayes, jugando un poco con las probabilidades condicionadas. Vamos a ver paso a paso cómo funciona.

¿Cuál es la probabilidad de que se produzcan dos sucesos? La probabilidad de que ocurra un suceso A es P(A) y la de que ocurra B, P(B). Pues bien, la probabilidad de que ocurran los dos es P(A∩B) que, si los dos sucesos son independientes, es igual a P(A) x P(B).

Imaginemos que tenemos un dado con seis caras. Si lo lanzamos una vez, la probabilidad de sacar, por ejemplo, un cinco es de 1/6 (un resultado entre los seis posibles). La de sacar un cuatro es, igualmente, 1/6. ¿Cuál será la probabilidad de sacar un cuatro, una vez que en la primera tirada sacamos un cinco?. Como las dos tiradas son independientes, la probabilidad de la combinación cinco seguida de cuatro será de 1/6 x 1/6 = 1/36.

Ahora pensemos otro ejemplo. Supongamos que en un grupo de 10 personas hay cuatro médicos, dos de los cuáles son cirujanos. Si tomamos uno al azar, la probabilidad de que sea médico es de 4/10 = 0,4 y la de que sea cirujano es de 2/10 = 0,2. Pero, si sacamos a uno y sabemos que es médico, la probabilidad de que sea cirujano ya no será de 0,2, porque los dos sucesos, ser médico y cirujano, no son independientes. Si es médico, la probabilidad de que sea cirujano será de 0,5 (la mitad de los médicos de nuestro grupo son cirujanos).

Cuando dos sucesos son dependientes, la probabilidad de que ocurran los dos será la probabilidad de ocurrir el primero, una vez que ocurre el segundo, por la probabilidad de ocurrir el segundo. Así que la P(médico∩cirujano) = P(cirujano|médico) x P(médico). Podemos generalizar la expresión de la siguiente manera:

P(A∩B) = P(A|B) x P(B), y cambiando de orden los componentes de la expresión, obtenemos la llamada regla de Bayes, de la siguiente forma:

P(A|B) = P(A∩B) / P(B).

La P(A∩B) será la probabilidad de B, una vez que se produce A, por la probabilidad de A = P(B|A) x P(A). Por otra parte, la probabilidad de B será igual a la suma de la probabilidad de producirse B una vez que se produzca A más la probabilidad de producirse B sin que ocurra A, lo que puesto de forma matemática queda de la siguiente forma:

P(B|A) x P(A) + P(B|Ac) x P(Ac), siendo P(Ac) la probabilidad de que no ocurra A.

Si sustituimos la regla inicial por sus valores desarrollados, obtendremos la expresión más conocida del teorema de Bayes:

P(A|B)=\frac{P(B|A) \times P(A)}{P(B|A) \times P(A)+P(B|A^{{c}}) \times P(A^{{c}})}Vamos a ver cómo se aplica el teorema de Bayes con un ejemplo práctico. Pensemos en el caso de la fildulastrosis aguda, una grave enfermedad cuya prevalencia en la población es, afortunadamente, bastante baja, de uno por cada 1000 habitantes. Luego, la P(F) = 0,001.

Por suerte tenemos una buena prueba diagnóstica, con una sensibilidad del 98% y una especificidad del 95%. Supongamos ahora que yo me hago la prueba y me da un resultado positivo. ¿Tengo que asustarme mucho? ¿Cuál es la probabilidad de que realmente tenga la enfermedad? ¿Os parece que será alta o baja? Veámoslo.

Una sensibilidad del 98% quiere decir que la probabilidad de dar positivo cuando se tiene la enfermedad es de 0,98. Matemáticamente, P(POS|F) = 0,98. Por otra parte, una especificidad del 95% quiere decir que la probabilidad de que dé un resultado negativo estando sano es de 0,95. O sea, P(NEG|Fc) = 0,95. Pero nosotros lo que queremos saber no es ninguna de estas dos cosas, sino que realmente buscamos cuál es la probabilidad de estar enfermo una vez que damos positivo en la prueba, o sea, la P(F|POS).

Para calcularla, no tenemos más que aplicar el teorema de Bayes:

P(F|POS)=\frac{P(POS|F) \times P(F)}{P(POS|F) \times P(F)+P(POS|F^{{c}}) \times P(F^{{c}})}A continuación, sustituimos los símbolos con sus valores y resolvemos la ecuación:

P(F|POS)=\frac{0,98 \times 0,001}{0,98 \times 0,001+[(1-0,95) \times (1-0,001)]}=0,02Así que vemos que, en principio, no tengo que asustarme mucho cuando la prueba me da un  resultado positivo, ya que la probabilidad de estar enfermo es solo de un 2%. Como veis, mucho más baja de lo que la intuición nos diría con una sensibilidad y una especificidad tan altas. ¿Por qué ocurre esto? Muy sencillo, porque la prevalencia de la enfermedad es muy baja. Vamos a repetir el experimento suponiendo ahora que la prevalencia es del 10% (0,1):

P(F|POS)=\frac{0,98 \times 0,1}{0,98 \times 0,1+[(1-0,95) \times (1-0,1)]}=0,68Como veis, en este caso la probabilidad de estar enfermo si doy positivo sube hasta el 68%. Esta probabilidad es el conocido valor predictivo positivo que, como podemos comprobar, puede variar enormemente según la frecuencia del efecto que estemos estudiando.

Y aquí lo dejamos por hoy. Antes de terminar, dejadme advertiros que no busquéis qué es la fildulastrosis. Me sorprendería mucho que alguien la encontrase en algún libro de medicina. Además, tened cuidado de no confundir P(POS|F) con P(F|POS), ya que incurriríais en un pecado llamado falacia inversa o falacia de la transposición de los condicionales, que es un error grave.

Hemos visto como el cálculo de probabilidades se complica un poco cuando los sucesos no son independientes. También hemos aprendido lo poco de fiar que son los valores predictivos cuando cambia la prevalencia de la enfermedad. Por eso se inventaron los cocientes de probabilidades, que no dependen tanto de la prevalencia de la enfermedad que se diagnostica y permiten valorar mejor de forma global la potencia de la prueba diagnóstica. Pero esa es otra historia…

Otra de monedas

Pocas cosas son inmutables en este mundo. Todo cambia y todo es relativo. Incluso la probabilidad de un suceso puede ser algo cambiante. Me explico.

Habitualmente vemos el mundo de la probabilidad desde un punto de vista frecuentista. Si tenemos un dado con seis caras asumimos que cada cara tiene una probabilidad de aparecer de una entre seis cada vez que lancemos el dado (suponiendo que el dado es legal y todas las caras tienen la misma probabilidad de salir).

Si tenemos dudas sobre si el dado es legal, lo que hacemos es tirar el dado un número enorme de veces hasta que somos capaces de calcular cuántas veces es predecible que aparezca cada cara, calculando así su probabilidad. Pero, en ambos casos, una vez que obtenemos el dato, ya no nos movemos de ahí. Pase lo que pase, seguiremos afirmando que la probabilidad de sacar un cinco en una tirada es un sexto.

Pero a veces la probabilidad puede cambiar y volverse diferente de la que preestablecimos en un comienzo. Una probabilidad inicial puede cambiar si inyectamos información nueva en el sistema y puede depender de eventos que vayan sucediendo a lo largo del tiempo. Esto da origen al punto de vista estadístico bayesiano, basado en gran parte en la regla de Bayes, en el que la probabilidad de un evento puede ir actualizándose a lo largo del tiempo. Pongamos un ejemplo.

Supongamos, como no, que tenemos tres monedas. Pero son tres monedas muy particulares, ya que solo una de ellas es legal (cara y cruz, CZ). De las otras dos, una tiene dos caras (CC) y la otra, dos cruces (ZZ). Ahora metemos las tres monedas en una bolsa y sacamos una de ellas sin mirar. La pregunta es: ¿cuál es la probabilidad de haber sacado la moneda con dos caras?.

¡Qué sencillo!, pensaréis la mayoría. Es el típico caso de eventos favorables dividido por eventos posibles. Como hay un evento favorable (CC) y tres posibles (CC, ZZ y CZ), la probabilidad es de un tercio. Tenemos una probabilidad del 33% de haber sacado la moneda con dos caras.

Pero, ¿qué pasa si os digo que lanzo la moneda al aire y me sale cara?. ¿Sigo teniendo la misma probabilidad de un tercio de tener la moneda con dos caras en la mano?. La respuesta, evidentemente, es no. ¿Y cuál es ahora la probabilidad de tener en la mano la moneda con dos caras?. Para calcularlo no nos valen los eventos favorables y los posibles, sino que tenemos que recurrir a la regla de Bayes. Vamos a razonarla.

La probabilidad de que se produzcan dos sucesos independientes A y B es igual a la probabilidad de A por la probabilidad de B. En el caso de que los dos sucesos sean dependientes, la probabilidad de A y B sería igual a la probabilidad de A por la probabilidad de B una vez que se ha producido A:

P(A y B) = P(A) x P(B|A)

Llevándolo al ejemplo de nuestras monedas, la probabilidad de que salga cara y de que tengamos la moneda de dos caras podemos expresarla como

P(C y CC) = P(C) x P(CC|C) (probabilidad de obtener cara por probabilidad de tener la moneda CC una vez que sale cara).

Pero también lo podemos expresar al revés:

P(C y CC) = P(CC) x P(C|CC) (probabilidad de tener la moneda CC por la probabilidad de sacar cara si tenemos la moneda CC).

Así que podemos igualar las dos expresiones y obtener nuestra buscada regla de Bayes:

P(C) x P(CC|C) = P(CC) x P(C|CC)

P(CC|C) = [P(CC) x P(C|CC)] / P(C)

Vamos a calcular nuestra probabilidad de tener la moneda CC si hemos sacado cara. Sabemos que P(CC) = 1/3. P(C|CC) = 1: si tenemos la moneda con dos caras la posibilidad de que salga cara es del 100%. ¿Cuál es la P(C)?.

La probabilidad de sacar cara será igual a la probabilidad de haber sacado de la bolsa la moneda ZZ por la posibilidad de tener cara con ZZ más la probabilidad de haber sacado CC por la probabilidad de cara con CC más la probabilidad de haber sacado la moneda legal por la probabilidad de cara con esta moneda:

P(C) = (1/3 x 0) + (1/3 x 1/2) + (1/3 x 1) = 1/2

Luego, P(CC|C) = [1 x 1/3] / 1/2 = 2/3 = 0,66

Esto quiere decir que si hemos tirado la moneda y ha salido cara, la probabilidad de que tengamos la moneda con dos caras sube del 33% al 66% (y la de tener la moneda con dos cruces baja del 33% al 0).

¿Veis cómo se ha actualizado la probabilidad?. ¿Qué pasaría si volvemos a lanzar la moneda y vuelve a salir cara?. ¿Cuál sería entonces la probabilidad de tener la moneda con dos caras?. Vamos a calcularlo siguiendo el mismo razonamiento:

P(CC|C) = [P(CC) x P(C|CC)] / P(C)

En este caso, P(CC) ya no vale 1/3, sino 2/3. P(C|CC) sigue valiendo 1. Por último P(C) también se ha modificado: ya hemos descartado la posibilidad de haber sacado la moneda con dos cruces, así que la probabilidad de sacar cara en el segundo lanzamiento es la probabilidad de tener CC por la probabilidad de cara con CC más la probabilidad de tener la moneda legal por la probabilidad de cara con esta moneda:

P(C) = (2/3 x 1) + (1/3 x 1/2) = 5/6

Así que P(CC|C) = (2/3 x 1) / (5/6) = 4/5 = 0,8

Si en el segundo lanzamiento volvemos a sacar cara, la probabilidad de que estemos lanzando la moneda con dos caras sube del 66% al 80%. Lógicamente, si seguimos repitiendo el experimento, cuántas más caras saquemos, más seguros estaremos de que tenemos la moneda con dos caras, aunque nunca tendremos una certeza total. Por supuesto, el experimento termina en el momento en que sacamos cruz, en el que la probabilidad de la moneda CC bajaría automáticamente a cero (y la de la moneda legal a 100%).

Como veis, la probabilidad no es tan inmutable como parece.

Y aquí dejamos de jugar con monedas por hoy. Solo deciros que, aunque sea menos conocido que el enfoque frecuentista, esto de la estadística bayesiana da para mucho. Existen manuales, programas informáticos especiales y métodos de análisis de resultados que incorporan la información que se deriva del estudio. Pero esa es otra historia…

El estigma de la culpabilidad

Hay veces en que los conceptos estadísticos son de gran utilidad para otras facetas de la vida. Por ejemplo, imaginad que se produce un robo en un banco y que el ladrón se ha introducido a través de un pequeño agujero que ha hecho en la pared. Ahora seguid imaginando que hace cinco años un ladrón pequeñito que salió de la cárcel hace dos meses, hizo un robo similar. ¿A quién creéis que interrogará la policía en primer lugar?.

Todos estaréis de acuerdo en que el ladrón enano será el primer sospechoso, pero probablemente os preguntaréis también qué tiene todo esto que ver con la estadística. Pues os diré que es muy simple: la policía está utilizando el concepto de probabilidad condicionada cuando piensa en su pequeño sospechoso. Vamos a ver por partes qué es la probabilidad condicionada y veréis que tengo razón.

Dos sucesos pueden ser dependientes o independientes. Son independientes cuando la probabilidad de producirse uno no tiene nada que ver con la de producirse el otro. Por ejemplo, si tiramos un dado diez veces, cada una de esas tiradas será independiente de las anteriores (y de la siguientes). Si sacamos un seis en una tirada, no por ello la probabilidad de sacar otro en la siguiente es más baja, sino que sigue siendo de un sexto. Aplicando el mismo razonamiento, si hemos tirado diez veces y no hemos tenido ningún seis, la probabilidad de sacarlo en la siguiente tirada sigue siendo un sexto. La probabilidad de obtener dos seises en dos tiradas sería el producto de la probabilidad de obtenerlo en cada una: 1/6 x 1/6 = 1/36.

Expresado matemáticamente, la probabilidad de que ocurran dos sucesos independientes es la siguiente:

P(A y B) = P(A) x P(B)

En otras ocasiones los sucesos pueden ser dependientes, lo que significa que el que ocurra uno de ellos cambia la probabilidad de que ocurra el otro. Hablamos entonces de probabilidad condicionada. Veamos algún ejemplo.

El más inmediato para los médicos puede ser el de los valores predictivos positivo y negativo de las pruebas diagnósticas. La probabilidad de que un paciente tenga un positivo en la prueba no es la misma que la probabilidad de que esté enfermo, una vez que haya dado positivo. Ésta, a su vez, será mayor que si ha dado negativo. Como veis, el resultado de la prueba condiciona la probabilidad de la enfermedad.

Pensad por otro lado que estamos estudiando una población de niños para ver cuantos tienen anemia y malnutrición. Lógicamente, los anémicos tendrán más probabilidad de estar malnutridos. Una vez que determinamos que el niño está anémico, la probabilidad de que esté malnutrido se incrementa. Lo bueno de todo estos es que, si conocemos las distintas probabilidades, podremos calcular la probabilidad de que tenga anemia una vez que hemos constatado que está malnutrido. Vamos a verlo matemáticamente.

La probabilidad de que dos sucesos dependientes ocurran puede expresarse de la siguiente forma:

P(A y B) = P(A) x P(B|A), donde B|A se lee como B condicionada por A.

También podríamos expresarlo cambiando A por B, de la siguiente forma:

P(A y B) = P(B) x P(A|B)

y como la parte izquierda de las dos ecuaciones es la misma podríamos igualarlas y obtener otra ecuación diferente:

P(A) x P(B|A) = P(B) x P(A|B)

P(B|A) = [P(B) x P(A|B)] / P(A)

que es lo que se conoce como regla de Bayes, que fue un clérigo del siglo XVIII muy aficionado a los sucesos condicionados.

Para entender su utilidad, vamos a aplicarlo al caso del valor predictivo positivo. Supongamos una enfermedad cuya prevalencia (probabilidad de padecerla en la población) es de 0,2 y una prueba diagnóstica para diagnosticarla con una sensibilidad de 0,8. Si tomamos una población y obtenemos un 30% de positivos (probabilidad 0,3), ¿cuál es la probabilidad de que un individuo esté enfermo una vez que ha obtenido un resultado positivo en la prueba?. Resolvamos el ejemplo:

P(enfermo|positivo) = [P(enfermo) x P(positivo|enfermo)] / P(positivo)

P(enfermo|positivo) = (prevalencia x sensibilidad) / P(prueba positiva)

P(enfermo|positivo) = (0,2 x 0,8) / 0,3 = 0,53

En resumen, si un individuo da positivo habrá un 53% de probabilidades de que esté enfermo.

Y aquí dejamos la regla de Bayes por hoy. Hay que decir que la contribución de Bayes a la ciencia de la estadística fue mucho más amplia. De hecho, este tipo de razonamientos conduce a otra forma de ver la estadística más dependiente de los sucesos que vayan ocurriendo, frente al enfoque estadístico clásico frecuentista que empleamos la mayor parte de las veces. Pero esa es otra historia…