Ciencia sin seso… locura doble

Píldoras sobre medicina basada en pruebas

Entradas etiquetadasProbabilidad postprueba
image_pdf

Cruzar el umbral

El mundo de la medicina es un mundo de incertidumbre. Nunca podemos estar seguros de nada al 100%, por muy evidente que parezca un diagnóstico. Pero no podemos dar palos a diestro y siniestro con técnicas diagnósticas o tratamientos ultramodernos (y nunca inocuos) a la hora de tomar las decisiones que continuamente nos persiguen en nuestra práctica diaria.

Es por esto que siempre estamos inmersos en un mundo de probabilidades, donde las certezas son casi tan infrecuentes como el mal llamado sentido común que, como casi todo el mundo sabe, es el menos común de los sentidos.

Imaginemos que estamos en la consulta y acude un paciente que viene porque le han dado una patada en el culo, bastante fuerte, eso sí. Como buenos médicos que somos le preguntamos aquello de ¿qué le pasa?, ¿desde cuándo? y ¿a qué lo atribuye? Y procedemos a una exploración física completa, descubriendo con horror que tiene un hematoma en la nalga derecha.

Aquí, amigos míos, las posibilidades diagnósticas son numerosas, así que lo primero que vamos a hacer es un diagnóstico diferencial exhaustivo.  Para ello, podremos adoptar cuatro enfoques diferentes. El primero es el enfoque posibilista, que enumerará todos los posibles diagnósticos y tratará de descartar todos ellos de forma simultánea solicitando las pruebas diagnósticas pertinentes. El segundo es el enfoque probabilístico, que ordenará los diagnósticos según su probabilidad relativa y actuará en consecuencia. Parece un hematoma postraumático (el conocido como síndrome de la patada en el culo), pero alguien podría pensar que la patada no ha sido tan fuerte, así que igual el pobre paciente tiene algún trastorno de coagulación o una discrasia sanguínea con una trombopenia secundaria o, incluso, una enfermedad inflamatoria intestinal con manifestaciones extraintestinales atípicas y fragilidad vascular glútea. También podríamos utilizar un enfoque pronóstico y tratar de demostrar o descartar la existencia de los diagnósticos posibles con peor pronóstico, con lo que el diagnóstico de síndrome de la patada en el culo perdería interés y nos iríamos a descartar una leucemia crónica. Por último, podría utilizarse un enfoque pragmático, prestando especial interés en descartar primero aquellos diagnósticos que tienen un tratamiento más eficaz (volveríamos a la patada).

Parece que lo más correcto es utilizar una combinación juiciosa de los enfoques probabilístico, pronóstico y pragmático. En nuestro caso indagaríamos si la intensidad del traumatismo justifica la magnitud del hematoma y, en ese caso, indicaríamos unos paños calientes y nos abstendríamos de realizar más pruebas diagnósticas. Y este ejemplo parece una gilipollez, pero os puedo asegurar que conozco gente que hace la lista completa y tira de prueba diagnóstica ante cualquier sintomatología, sin reparar en gastos ni riesgos. Y, además, alguno que yo me sé pensaría en alguna otra posibilidad más exótica que no acabo de imaginar y aún el paciente tendría que estar agradecido si su diagnóstico no precisa de la realización de una esfinterotomía anal forzada. Y es que, como ya hemos comentado, la lista de espera para obtener un poco de sentido común supera en muchas ocasiones a la lista de espera quirúrgica.

Imaginad ahora otro paciente con un complejo sintomático menos estúpido y absurdo que el del ejemplo previo. Por ejemplo, un niño con síntomas de enfermedad celiaca. Antes de que realicemos ninguna prueba diagnóstica, nuestro paciente ya tiene una probabilidad de padecer la enfermedad. Esta probabilidad vendrá condicionada por la prevalencia de la enfermedad en la población de la que procede y es lo que se denomina probabilidad preprueba. Esta probabilidad se encontrará en algún punto en relación con dos umbrales: el umbral de diagnóstico y el umbral terapéutico.

Si consideramos que la probabilidad preprueba justifica el tratamiento de la enfermedad, no habrá necesidad de hacer pruebas diagnósticas y procederemos a retirar el gluten de la dieta. Pero lo habitual es que la probabilidad preprueba no nos permita ni descartar la enfermedad con una seguridad razonable ni confirmarla con la seguridad suficiente como para iniciar el tratamiento.

Realizaremos entonces la prueba que consideremos indicada, obteniendo una nueva probabilidad de enfermedad según el resultado que nos dé, la llamada probabilidad postprueba. Si esta probabilidad es tan alta como para realizar el diagnóstico e iniciar el tratamiento habremos cruzado nuestro primer umbral, el terapéutico. Ya no hará falta realizar pruebas adicionales, ya que tendremos la certeza suficiente para asegurar el diagnóstico y tratar al paciente, siempre dentro de los rangos de incertidumbre de nuestro oficio.

¿Y de qué depende nuestro umbral de tratamiento?. Pues hay varios factores implicados. Cuánto mayor riesgo, coste o efectos adversos tenga el tratamiento en cuestión, mayor será el umbral que exigiremos para tratar. Por otra parte, cuanta mayor gravedad comporte omitir el diagnóstico, menor será el umbral terapéutico que aceptaremos.

Pero puede ocurrir que la probabilidad postprueba sea tan baja que nos permita descartar la enfermedad con una seguridad razonable. Habremos cruzado entonces nuestro segundo umbral, el de diagnóstico, también llamado umbral negativo de prueba. Es evidente que, en esta situación, no estará indicado realizar más pruebas diagnósticas y, mucho menos, iniciar el tratamiento.

Sin embargo, en muchas ocasiones el cambio de probabilidad de preprueba a postprueba nos sigue dejando en tierra de nadie, sin alcanzar ninguno de los dos umbrales, por lo que nos veremos obligados a realizar pruebas adicionales hasta que alcancemos uno de los dos límites.

Para terminar, solo quiero insistir en la importancia de las propiedades de las pruebas diagnósticas para movernos de una probabilidad a otra y poder alcanzar uno de los dos umbrales: sensibilidad, especificidad, valores predictivos y cocientes de probabilidad. Conocer bien estas propiedades es esencial para decidir la realización de la prueba, sobre todo cuando es costosa o comporta un riesgo o una molestia para el paciente. Pero esa es otra historia…

El cribado imperfecto

Nadie es perfecto. Es un hecho. Y un consuelo también. Porque el problema no es ser imperfecto, que es algo inevitable. El verdadero problema estriba en creerse perfecto, en ser ignorante de las propias limitaciones. Y lo mismo ocurre con otras muchas cosas, como las pruebas diagnósticas que utilizamos en medicina.

Aunque lo de las pruebas diagnósticas tiene mucho más delito porque, más allá de su imperfección, se permiten tratar de forma diferente a sanos y enfermos. ¿No me creéis?. Vamos a hacer unas reflexiones.

Venn_DcoPara empezar, echad un vistazo al diagrama de Venn que os he dibujado. ¡Qué recuerdos de infancia me traen estos diagramas!. El cuadrado simboliza nuestra población en cuestión. De la diagonal para arriba están los enfermos (ENF) y de la diagonal para abajo los sanos (SAN), con lo que cada área representa la probabilidad de estar SAN o ENF. El área del cuadrado, obviamente, vale 1: es seguro que uno está o enfermo o sano, situaciones mutuamente excluyentes. La elipse engloba a los sujetos a los que realizamos la prueba diagnóstica y obtenemos un resultado positivo (POS). En un mundo perfecto, toda la elipse estaría por encima de la diagonal, pero en el mundo imperfecto real la elipse está cruzada por la diagonal, con lo que los resultados POS pueden ser verdaderos (VP) o falsos (FP), estos últimos cuando se obtienen en sanos. La superficie fuera de la elipse serían los resultados negativos (NEG) que, como podéis ver, también se dividen en verdaderos y falsos (VN, FN).

Ahora traslademos esto a la típica tabla de contingencia que definiría las probabilidades de las diferentes opciones y pensemos en una situación en la que todavía no hemos realizado la prueba. En este caso, las columnas condicionan las probabilidades de los sucesos de las filas. Por ejemplo, la casilla superior izquierda representa la probabilidad de obtener POS en los ENF (una vez que uno está enfermo, ¿qué probabilidad hay de obtener un resultado positivo?), lo que denominamos sensibilidad (SEN). Por su parte, la inferior derecha representa la probabilidad de obtener un NEG en un SAN, lo que llamamos especificidad (ESP). El total de la primera columna representa la probabilidad de estar enfermo, que no es más que la prevalencia (PRV) y, así, podemos discernir qué significado tiene la probabilidad de cada celda. Esta tabla nos proporciona dos características de la prueba, SEN y ESP, que, como sabemos, son intrínsecas a la prueba siempre que se realice en unas condiciones similares, aunque las poblaciones sean diferentes.

Prob_pre_post_DCO
¿Y qué pasa con la tabla de contingencia una vez que hemos realizado la prueba?. Se produce un cambio sutil, pero muy importante: ahora son las filas las que condicionan las probabilidades de los sucesos de las columnas. Los totales de la tabla no cambian pero fijaos que, ahora, la primera celda representa la probabilidad de estar ENF una vez que se ha dado POS (cuando da positivo, ¿qué probabilidad hay de que realmente esté enfermo?) y esto ya no es la SEN, sino el valor predictivo positivo (VPP). Lo mismo ocurre con la celda inferior derecha, que ahora representa la probabilidad de estar SAN una vez que se obtiene un NEG: valor predictivo negativo (VPN).

Vemos, pues, que antes de realizar la prueba conoceremos habitualmente su SEN y ESP, mientras que una vez realizada, lo que obtendremos será sus valores predictivos positivo y negativo, quedando estas cuatro características de la prueba ligadas para siempre entre sí gracias a la magia del teorema de Bayes. Claro que, en el caso del VPP y VPN hay un quinto en discordia: la prevalencia. Ya sabemos que los valores predictivos varían en función de la PRV de la enfermedad en la población, aunque se mantengan sin cambios la SEN y ESP de la prueba.

Y todo esto tiene su traducción práctica. Vamos a inventarnos un ejemplo para liarlo todo un poco más. cribado_imperfectoSupongamos que tenemos una población de un millón de habitantes a la que realizamos un cribado de fildulastrosis. Sabemos, por estudios previos, que la prueba tiene una SEN de 0,66 y una ESP de 0,96, y que la prevalencia de fildulastrosis es de 0,0001 (1 por cada 10.000), enfermedad rara que os aconsejo no os molestéis en buscar, por si a alguien se le ha ocurrido.

Sabiendo la PREV es fácil calcular que en nuestra población hay 100 ENF. De éstos, 66 darán POS (SEN=0,66) y 34 darán NEG. Por otra parte, habrá 990.900 sanos, de los que el 96% (959.904) darán NEG (ESP=0,96) y el resto (39.996) darán POS. En resumen, que obtendremos 40.062 POS, de los cuales 39.996 serán FP. Que nadie se asuste del alto número de falsos positivos. Esto es debido a que hemos elegido una enfermedad muy rara, por lo que hay muchos FP a pesar de que la ESP sea bastante alta. Pensad que, en la vida real, habría que hacer pruebas de confirmación a todos estos sujetos para acabar confirmando el diagnóstico solo en 66 personas. Por eso es tan importante pensar bien si merece la pena hacer un cribado antes de ponerse a buscar enfermedades en la población. Por eso, y por otras razones.

Ya podemos calcular los valores predictivos. El VPP será el cociente entre POS verdaderos y el total de POS: 66/40.062 = 0,0016. O sea, que habrá un enfermo por cada 1.500 positivos, más o menos. De manera similar, el VPN será el cociente entre NEG verdaderos y NEG totales: 959.904/959.938 = 0,99. Como era de esperar, dada la alta ESP de la prueba, un resultado negativo hace altamente improbable que uno esté enfermo.

¿Qué os parece?. ¿Es útil la prueba como herramienta de cribado poblacional con ese número de falsos positivos y un VPP de 0,0016?. Pues, aunque pueda parecer raro, si lo pensamos un momento, no es tan mala. La probabilidad preprueba de estar ENF es 0,0001 (la PRV). La probabilidad postprueba es 0,0016 (el VPP). Luego su cociente tiene un valor de 0,0016/0,0001 = 16, lo que quiere decir que hemos multiplicado por 16 nuestra capacidad de detectar al enfermo. La prueba, pues, no parece tan mala, aunque habrá que tener en cuenta otros muchos factores antes de ponernos a cribar.

Todo esto que hemos visto hasta ahora tiene una aplicación práctica adicional. Supongamos que solo conocemos SEN y ESP, pero desconocemos la PRV de la enfermedad en la población que hemos cribado. ¿Podemos estimarla a partir de los resultados de la prueba de cribado?. La respuesta es, claro está, que sí.

Imaginemos de nuevo nuestra población de un millón de sujetos. Les hacemos la prueba y obtenemos 40.062 positivos. El problema aquí radica en que parte de estos (la mayoría) son FP. Además, no sabemos cuántos enfermos han dado negativo (FN). ¿Cómo podemos conocer entonces el número de enfermos de la población?. Pensando un poco.

Ya hemos dicho que el número de enfermos será igual al número de positivos menos los FP más los FN:

Nº enfermos = POS totales – número de FP + número de FN

Los POS los tenemos: 40.062. Los FP serán aquéllos sanos (1-PRV) que den positivo siendo sanos (los sanos que no dan negativo: 1-ESP). Luego el número total de FP será:

FP = (1-PRV)(1-EPS) x n (1 millón, el tamaño de la población).

Por último, los FN serán los enfermos (PRV) que no den positivo (1-SEN). Luego el número total de FN será:

FN = PRV(1-SEN) x n (1 millón, el tamaño de nuestra población).

Si sustituimos los totales de FP y FN en la primera ecuación por los valores que acabamos de deducir, podremos despejar la PRV, obteniendo la fórmula siguiente:

 PRV= \frac{\frac{POS}{n}-(1-ESP)}{SEN - (1-ESP)}

Ya podemos calcular la prevalencia en nuestra población:

 PRV= \frac{\frac{40.062}{1.000.000}-(1-0,96)}{0,66 - (1-0,96)}= \frac{0,040062 - 0,04}{0,66 -0,04}= \frac{0,000062}{0,062}= 0,0001 (1 \ por\ cada\ 10.000)

Bueno, creo que se me acaba de fundir un lóbulo, así que vamos a tener que dejarlo aquí. Una vez más hemos contemplado la magia y el poder de los números y hemos visto cómo podemos hacer trabajar a nuestro favor las imperfecciones de nuestras herramientas. Podríamos, incluso, ir un poco más allá y calcular la precisión de la estimación que hemos realizado. Pero esa es otra historia…