Ciencia sin seso… locura doble

Píldoras sobre medicina basada en pruebas

Entradas etiquetadasProporción atribuible en expuestos
image_pdf

Simplificando el impacto

En los estudios epidemiológicos es habitual encontrar un conjunto de medidas de efecto como pueden ser los riesgos en expuestos y no expuestos, los riesgos relativos y las reducciones de riesgo. Sin embargo, para que el análisis de un estudio pueda considerarse bien hecho, conviene que las medidas de efecto se acompañen de una serie de medidas de impacto, que son las que nos informan de forma más precisa sobre el verdadero efecto de la exposición o intervención sobre el efecto que estamos estudiando.

Por ejemplo, si realizamos un estudio sobre la prevención de la mortalidad por una enfermedad con un tratamiento X, un riesgo relativo de 0,5 nos dirá que existe la mitad de probabilidad de morirse si tomamos el fármaco, pero no podemos ver de forma clara el impacto del tratamiento. Sin embargo, si calculamos el número necesario a tratar (NNT) y nos sale que es de dos, sabremos que uno de cada dos personas tratadas evitarán la muerte por esa enfermedad. Esta medida de impacto, el NNT, sí nos da una idea más clara del efecto real de la intervención en nuestra práctica.

Existen diversas medidas de impacto, además del NNT. En los estudios de cohortes, que son en los que nos vamos a centrar hoy, podemos calcular la diferencia de incidencias entre expuestos y no expuestos, la proporción atribuible en expuestos (PAE), la proporción evitable en expuestos (PEE) y la proporción atribuible poblacional (PAP).

La PAE nos indica el riesgo de presentar el efecto en los expuestos que se debe específicamente a eso, a haber estado expuesto. La PEE nos informaría de los casos de enfermedad en el grupo expuesto que podrían haberse evitado si no hubiese existido la exposición. formulas_cohortesPor último, la PAP es un riesgo específico atribuible que describe la proporción de casos que se podrían prevenir en la población si se eliminase completamente el factor de riesgo en estudio. Como un cuarto parámetro, considerando la presencia de exposición y enfermedad, podemos calcular la fracción de exposición en los casos (FEc), que define la proporción de casos expuestos que son atribuibles al factor de riesgo.

En la tabla que os adjunto podéis ver las fórmulas para el cálculo de estos parámetros.

El problema de estas medidas de impacto es que pueden ser, en ocasiones, difíciles de interpretar por parte del clínico. Por ese motivo, e inspirados en el cálculo de los NNT, se han ideado una serie de medidas denominadas números de impacto, que nos dan una idea más directa del efecto del factor de exposición sobre la enfermedad en estudio. Estos números de impacto son el número de impacto en expuestos (NIE), el número de impacto en casos (NIC) y el número de impacto de los casos expuestos (NICE).

Empecemos por el más sencillo. El NIE sería el equivalente al NNT y se calcularía como el inverso de la reducción absoluta de riesgos o de la diferencia de riesgos. El NNT es el número de personas que deben ser tratadas para prevenir un caso en comparación con el grupo control. El NIE representa el número medio de personas que tienen que exponerse al factor de riesgo para que se produzca un nuevo caso de enfermedad en comparación con las personas no expuestas. Por ejemplo, un NIE de 10 significa que de cada 10 expuestos se producirá un caso de enfermedad atribuible al factor de riesgo estudiado.

El NIC es el inverso de la PAP, así que define el número medio de personas enfermas entre las que un caso es debido al factor de riesgo. Un NIC de 10 quiere decir que por cada 10 enfermos de la población, uno es atribuible al factor de riesgo en estudio.

Por fin, el NICE es el inverso de la FEc. Es el número medio de enfermos entre los que un caso es atribuible al factor de riesgo.

En resumen, estas tres medidas miden el impacto de la exposición entre todos los expuestos (NIE), entre todos los enfermos (NIC) y entre todos los enfermos que han estado expuestos (NICE).

numeros-impactoVeamos un ejemplo con los datos de la tabla adjunta, que se corresponden a un estudio ficticio sobre el efecto de la mortalidad coronaria por el hábito de fumar. Yo he usado una calculadora epidemiológica de las muchas que hay disponibles en Internet y he calculado una diferencia de riesgos de 0,0027, una PAP de 0,16 y una FEc de 0,4. Ya podemos calcular nuestros números de impacto.

El NIE será de 1/0,0027 = 366. Redondeando, de cada 365 fumadores, uno morirá por una cardiopatía atribuible al tabaco.

El NIC será de 1/0,16 = 6,25. De cada seis muertos por cardiopatía en la población, uno será atribuible al tabaco.

Por fin, el NICE será de 1/0,4 = 2,5. Aproximadamente, por cada tres muertos por cardiopatía entre los que fumaban, uno sería atribuible al vicio del tabaco.

Y aquí lo dejamos por hoy. No olvidéis que los datos del ejemplo son ficticios y no sé si se ajustan mucho a la realidad.

Hemos hablado solo de las estimaciones puntuales de los números de impacto pero, como siempre, lo preferible es el cálculo de sus intervalos de confianza. Los tres se pueden calcular con los límites de los intervalos de las medidas a partir de las que se obtienen los números de impacto, pero lo mejor es utilizar una calculadora que lo haga por nosotros. El cálculo de los intervalos de algunos parámetros como, por ejemplo, de la PAP puede ser complejo. Pero esa es otra historia…

La tabla

Existen gran cantidad de tablas. Y tienen un gran papel a lo largo de nuestra vida. Quizás la que primero nos asalta en nuestra más tierna infancia es la tabla de multiplicar. ¿Quién no recuerda con nostalgia, al menos los más mayorcitos, como  repetíamos como loros aquello del dos por uno es dos, dos por… hasta que lo aprendíamos de memoria?. Pero no hicimos más que dominar las múltiples tablas de multiplicar cuando nos topamos con la tabla periódica de los elementos. Otra vez a aprender de memoria, esta vez ayudados de reglas nemotécnicas imposiblemente idiotas sobre Indios que Ganaban Buena Altura y no sé qué.

Pero es con los años cuando llega una de las peores de todas: la tabla de composición de alimentos, con su celda llena de calorías. Esta tabla nos persigue hasta en sueños. Y todo porque comer mucho tiene gran número de inconvenientes, demostrados la mayor parte de ellos gracias a la ayuda de otro tipo de tabla: la tabla de contingencia.

Las tablas de contingencia son usadas muy frecuentemente en Epidemiología para analizar la relación entre dos o más variables. Están formadas por filas y columnas. En las filas se suelen colocar los grupos por nivel de exposición al factor de estudio y en las columnas las diferentes categorías que tienen que ver con el estado de enfermedad o daño que investigamos. Filas y columnas se cruzan para formar celdas donde se representa la frecuencia de esa determinada combinación de variables.

Lo más habitual es que se representen dos variables (nuestra querida tabla 2×2), una dependiente y otra independiente, pero esto no siempre es así. Puede haber más de dos variables y, en ocasiones, puede no existir una dirección de dependencia entre las variables antes de realizar el análisis.

Las tablas 2×2 simples permiten analizar la relación entre dos variables dicotómicas. Según su contenido y el diseño del estudio al que pertenezcan, sus celdas pueden tener significados ligeramente diferentes, lo mismo que ocurre con las medidas que podemos calcular a partir de los datos de la tabla.

contingencia_transversalLas primeras serían las tablas de estudios transversales. En este tipo de estudios se representa una especie de foto fija de nuestra muestra que nos permite estudiar la relación entre las variables. Son, pues, estudios de prevalencia y, aunque los datos se recojan a lo largo de un periodo de tiempo, los resultados representan esa foto fija a la que ya nos hemos referido. En las columnas se coloca la variable dependiente (enfermedad o daño producido) y en las filas la independiente (el grado de exposición), con lo que podemos calcular una serie de medidas de frecuencia, de asociación y de significación estadística.

Las medidas de frecuencia son la prevalencia de enfermedad entre expuestos (EXP) y no expuestos (NEXP) y la prevalencia de exposición entre enfermos (ENF) y no enfermos (NENF). Estas prevalencias representan el número de personas enfermas, sanas, expuestas y no expuestas en relación con el total de cada grupo, por lo que son tasas estimadas en un momento puntual.

Las medidas de asociación son las razones de las prevalencias que acabamos de mencionar según enfermedad y exposición y la odds ratio, que nos dice cuánto más probable es que se produzca la enfermedad respecto a que no se produzca en EXP frente a NEXP. Un valor de estas medidas mayor de uno indica que el factor es de riesgo para que se produzca la enfermedad. Si vale de cero a uno querrá decir que el factor es de protección. Y si vale uno, pues que ni carne ni pescado.

Por último, como en todos los tipos de tablas que vamos a mencionar, se pueden calcular medidas de asociación estadística, fundamentalmente la chi-cuadrado con o sin corrección, la prueba exacta de Fisher y el valor de la p, uni o bilateral.

Muy parecidas a estas que hemos visto son las tablas de los estudios de casos y controles. En estos se trata de ver si diferentes grados de la exposición explican diferentes grados de enfermedad. En la columnas se colocan los casos y los controles y en las filas los EXP y NEXP.

contingencia_casos_controlesLas medidas de frecuencia que podemos calcular son la proporción de casos expuestos (respecto al total de casos) y la proporción de controles expuestos (respecto al total de controles). Lógicamente, podemos calcular también las proporciones de NEXP calculando los complementarios de los anteriores.

La medida de asociación fundamental es la odds ratio, que ya conocemos y en la que no nos vamos a detener mucho. Ya sabéis que, de forma simplificada, podemos calcularla como el cociente de los productos cruzados de la tabla y que nos indica cuánto es más probable contraer la enfermedad en EXP que en NEXP. La otra medida sería la fracción atribuible en los expuestos (FAExp), que nos indica el número de enfermos que son debidos a la acción directa de la exposición.

Podemos, en este tipo de tablas, calcular, además, una medida de impacto: la fracción atribuible en la población (FAPob), que sería el impacto potencial que tendría sobre la población el eliminar el factor de exposición. Si es un factor de riesgo sería un impacto positivo y, a la inversa, si es protector, negativo.

Comentar que las medidas de significación estadística dependerán de que los datos sean pareados (utilizaremos la prueba de McNemar) o no pareados (chi-cuadrado, prueba exacta de Fisher y valor de p).

contingencia_cohortes_acumulada

El tercer tipo de tablas de contingencia es el que corresponde a los estudios de cohortes, aunque la estructura difiere un poco si son estudios de casos nuevos producidos durante todo el periodo de estudio (incidencia acumulada) o si consideran el periodo de tiempo del estudio, el momento de aparición de la enfermedad y el diferente seguimiento de los grupos (tasa de incidencia o densidad de incidencia).

Las tablas de los estudios de incidencia acumulada (IA) son similares a las que hemos visto hasta ahora. En las columnas se representa el estado de enfermedad y en las filas el de exposición. Por otra parte, las de densidad o tasa de incidencia (TI) representan en una de las columnas el número de enfermos y en la otra el seguimiento en personas-año, de forma que los que tienen un seguimiento más prolongado tienen un mayor peso a la hora de calcular las medidas de frecuencia, asociación, etc.

contingencia_cohortes_densidadLas medidas de frecuencia serían los riesgos en EXP (Re) y en NEXP (Ro) para los casos de IA y las tasas de incidencia en EXP (TIe) y NEXP (TIo) en los de TI.

Los cocientes de las medidas anteriores nos permiten calcular las medidas de asociación: riesgos relativos (RR), reducción absoluta de riesgo (RAR) y reducción relativa de riesgo (RRR) para los estudios de IA y reducciones absolutas y relativas de las TI para los estudios de densidad. Podemos calcular también la FAExp como hacíamos con los estudios de casos y controles, al igual que la FAPob como medida de impacto.

En teoría pueden calcularse también las odds ratios, pero suelen ser menos utilizadas en este tipo de tablas. En cualquier caso, ya sabemos que odds ratio y RR se parecerán cuando la prevalencia de la enfermedad sea baja.

Para terminar con este tipo de tablas, podemos calcular las medidas de asociación estadística: chi-cuadrado, Fisher y p para estudios de IA y otras pruebas de asociación para los estudios de densidad de incidencia.

Como siempre, todos estos cálculos pueden realizarse a mano, aunque os recomiendo utilizar calculadoras, como la disponible en la Red CASPe. Es más sencillo, más rápido y, además, nos proporcionan todos estos parámetros con sus correspondientes intervalos de confianza, con lo que podemos estimar también su precisión.

Y con esto hemos llegado al final. Existen más tipos de tablas, con múltiples niveles por tratar más de dos variables, estratificadas según diferentes factores, etc. Pero esa es otra historia…

¿A qué lo atribuye?

Parece que fue ayer. Yo empezaba mis andanzas en los hospitales y tenía mis primeros contactos con El Paciente. Y de enfermedades no es que supiese demasiado, por cierto, pero sabía sin necesidad de pensar en ello cuáles eran las tres preguntas con las que se iniciaba toda buena historia clínica: ¿qué le pasa?, ¿desde cuándo?, ¿a qué lo atribuye?.

Y es que la necesidad de saber el porqué de las cosas es inherente a la naturaleza humana y, por supuesto, tiene gran importancia en medicina. Todo el mundo está loco por establecer relaciones de causa-efecto, por lo que a veces estas relaciones se hacen sin mucho rigor y llega uno a creerse que el culpable de su catarro de verano es el fulano del supermercado, que ha puesto el aire acondicionado muy fuerte. Por eso es de capital importancia que los estudios sobre etiología se realicen y se valoren con rigor. Por eso, y porque cuando hablamos de causa nos referimos también a las que hacen daño, incluidas nuestras propias acciones (lo que la gente culta llama iatrogenia).

Esta es la razón de que los estudios de etiología/daño tengan diseños similares. El ideal sería el ensayo clínico, y podemos usarlo, por ejemplo, para saber si un tratamiento es la causa de la curación del paciente. Pero cuando estudiamos factores de riesgo o exposiciones nocivas, el principio ético de no maleficencia nos impide aleatorizar las exposiciones, por lo que hemos de recurrir a estudios observacionales como los estudios de cohortes o los estudios de casos y controles, aunque siempre el nivel de evidencia será menor que el de los estudios experimentales.

Para valorar críticamente un trabajo sobre etiología/daño recurriremos a nuestros consabidos pilares: validez, importancia y aplicabilidad.

En primer lugar nos centraremos en la VALIDEZ o rigor científico del trabajo, que debe responder a la pregunta sobre si el factor o la intervención que estudiamos fue la causa del efecto adverso o la enfermedad producida.

Como siempre, buscaremos unos criterios primarios de validez. Si estos no se cumplen, dejaremos el trabajo y nos dedicaremos a otra cosa más provechosa. Lo primero será determinar si se han comparado grupos similares en cuanto a otros factores determinantes del efecto diferentes de la exposición estudiada. La aleatorización de los ensayos clínicos facilita que los grupos sean homogéneos, pero no podemos contar con ella en el caso de estudios observacionales. La homogeneidad de las dos cohortes es fundamental y sin ella el estudio no tendrá validez. Uno siempre se puede defender diciendo que ha estratificado por las diferencias entre los dos grupos o que ha hecho un análisis multivariante para controlar el efecto de las variables confusoras conocidas pero, ¿qué hacemos con las desconocidas?. Lo mismo se aplica a los estudios de casos y controles, mucho más sensibles a sesgos y confusiones.

¿Se han valorado la exposición y el efecto de la misma forma en todos los grupos?. En los ensayos y cohortes debemos comprobar que el efecto ha tenido la misma probabilidad de aparecer y ser detectado en los dos grupos. Por otra parte, en los estudios de casos y controles es muy importante valorar adecuadamente la exposición previa, por lo que debemos investigar si ha habido posibles sesgos de recogida de datos, como el sesgo de memoria (los enfermos suelen acordarse mejor de sus síntomas pasados que los sanos). Por último, debemos considerar si el seguimiento ha sido lo suficientemente largo y completo. Las pérdidas durante el estudio, frecuentes en los diseños observacionales, pueden sesgar los resultados.

Si hemos contestado sí a las tres preguntas anteriores, pasamos a considerar los criterios secundarios de validez. Los resultados del estudio deben ser evaluados para determinar si la asociación entre exposición y efecto satisface las pruebas de causalidad razonable. HillUna herramienta que podemos usar son los criterios de Hill, que fue un señor que sugirió utilizar una serie de aspectos para tratar de distinguir el carácter causal o no causal de una asociación. Estos criterios son los siguientes: a) fuerza de la asociación, que es la razón de riesgos de exposición y efecto, que consideraremos en breve; b) consistencia, que es la reproducibilidad en poblaciones o situaciones diferentes; c) especificidad, que quiere decir que una causa produce un único efecto y no múltiples; d) temporalidad: es fundamental que la causa preceda al efecto; e) gradiente biológico: a más intensidad de causa, mayor intensidad de efecto; f) plausibilidad: tiene que tener su lógica según nuestros conocimientos biológicos; g) coherencia, que no entre en conflicto con lo que se sabe de la enfermedad o el efecto; h) evidencia experimental, difícil de obtener muchas veces en humanos por problemas éticos; y, finalmente, i) analogía con otras situaciones conocidas. Aunque estos criterios son ya viejecillos y alguno puede ser irrelevante (evidencia experimental o analogía) o erróneo (especificidad), pueden servirnos de orientación. El criterio de temporalidad sería necesario y se complementaría muy bien con los de gradiente biológico, plausibilidad y coherencia.

Otro aspecto importante es estudiar si, al margen de la intervención en estudio, se han tratado los dos grupos de forma similar. En este tipo de estudios en los que el doble ciego brilla por su ausencia es en los que hay más riesgo de sesgo debido a cointervenciones, sobre todo si éstas son tratamientos con un efecto mucho mayor que la exposición en estudio.

En cuanto a la IMPORTANCIA de los resultados, debemos considerar la magnitud y la precisión de la asociación entre exposición y efecto.

¿Cuál fue la fuerza de la asociación?. La medida de asociación más habitual es el riesgo relativo (RR), que podremos usar en los ensayos y en los estudios de cohortes. Sin embargo, en los estudios de casos y controles desconocemos la incidencia del efecto (ya se ha producido al realizarse el estudio), por lo que utilizamos la odds ratio (OR). Como ya sabemos, la interpretación de los dos parámetros es similar. Incluso los dos son similares cuando la frecuencia del efecto es muy baja. Sin embargo, cuánto mayor es la magnitud o la frecuencia del efecto, más diferentes son RR y OR, con la peculiaridad de que la OR tiende a sobreestimar la fuerza de la asociación cuando es mayor que 1 y a subestimarla cuando es menor que 1. De todas formas, estos caprichos de la OR excepcionalmente nos modificarán la interpretación cualitativa de los resultados.

Hay que tener en cuenta que en un ensayo es válido cualquier valor de OR o RR cuyo intervalo de confianza no incluya el uno, pero en estudios observacionales hay que ser un poco más exigente. Así, en un estudio de cohortes daremos valor a RR mayores o iguales a tres y, en uno de casos y controles, a OR de cuatro o más.

Otro parámetro muy útil (en ensayos y cohortes) es la diferencia de riesgos o diferencia de incidencias, que es una forma rebuscada de llamar a nuestra conocida reducción absoluta de riesgo (RAR), que nos permite calcular el NNT (o NND, número necesario a dañar), parámetro que mejor nos cuantifica la importancia clínica de la asociación. También, similar a la reducción relativa del riesgo (RRR), contamos con la fracción atribuible en los expuestos, que es el porcentaje de riesgo observado en los expuestos que se debe a la exposición.

Y, ¿cuál es la precisión de los resultados?. Como ya sabemos, tiraremos de nuestros queridos intervalos de confianza, que nos servirán para determinar la precisión de la estimación del parámetro en la población. Siempre es conveniente disponer de todos estos parámetros, por lo que deben figurar en el estudio o debe ser posible su cálculo a partir de los datos proporcionados por los autores.

Para finalizar, nos fijaremos en la APLICABILIDAD de los resultados en nuestra práctica.

¿Son aplicables los resultados a nuestros pacientes?. Buscaremos si hay diferencias que desaconsejen extrapolar los resultados del trabajo a nuestro medio. Además, consideraremos cuál es la magnitud del riesgo en nuestros pacientes en función de los resultados del estudio y de las características del paciente en quien queramos aplicarlos. Y, finalmente, teniendo todos estos datos en mente, habrá que pensar en nuestras condiciones de trabajo, las alternativas que tenemos y las preferencias del paciente para decidir si hay que evitar la exposición que se ha estudiado. Por ejemplo, si la magnitud del riesgo es alta y disponemos de una alternativa eficaz la decisión está clara, pero las cosas no siempre serán tan sencillas.

Como siempre, os aconsejo que utilicéis los recursos CASPe para valorar los trabajos, tanto las parrillas adecuadas a cada diseño para hacer la lectura crítica, como las calculadoras para valorar la importancia de los resultados.

Antes de acabar, dejadme aclarar una cosa. Aunque hemos comentado que en las cohortes y ensayos usamos RR y en los casos y controles usamos OR, podemos usar OR en cualquier tipo de estudio (no así RR, para los cuáles hay que conocer la incidencia del efecto). El problema es que son algo menos precisas, por lo que se prefieren los RR y los NNT, cuando es posible utilizarlos. De todas formas, la OR es cada vez más popular por otro motivo, y es su utilización en los modelos de regresión logística, que nos permiten obtener estimadores ajustados por las diferentes variables de confusión. Pero esa es otra historia…

Una de romanos

¡Qué tíos esos romanos!. Iban, veían y vencían. Con esas legiones, cada una con sus diez cohortes, cada cohorte con sus casi quinientos romanos con su falda y sus sandalias de correas. Las cohortes eran grupos de soldados que estaban al alcance de la arenga de un mismo jefe y siempre avanzaban, nunca retrocedían. Así se puede conquistar la Galia (aunque no en su totalidad, como es bien sabido).

En epidemiología, una cohorte es también un grupo de personas que comparten algo, pero en lugar de ser la arenga de su jefe es la exposición a un factor que se estudia a lo largo del tiempo (tampoco son imprescindibles ni la falda ni las sandalias). Así, un estudio de cohortes es un tipo de diseño observacional, analítico y longitudinal que compara la frecuencia con la que ocurre un determinado efecto (generalmente una enfermedad) en dos grupos diferentes (las cohortes), uno de ellos expuesto a un factor y otro no expuesto al mismo factor. Ambas cohortes se estudian a lo largo del tiempo, por lo que la mayor parte de los estudios de cohortes son prospectivos (van hacia delante, como las cohortes romanas). Sin embargo, es posible hacer estudios de cohortes retrospectivos una vez ocurridos tanto la exposición como el efecto, identificándose los dos grupos en un momento atrás en el tiempo lo suficientemente alejado como para permitir que el efecto se haya desarrollado.

Como curiosidad, también podemos hacer un estudio con una sola cohorte si queremos estudiar la incidencia o la evolución de una determinada enfermedad, pero en realidad este tipo de diseños se engloba en los estudios descriptivos longitudinales.

Al realizarse un seguimiento a lo largo del tiempo, los estudios de cohortes permiten calcular la incidencia del efecto entre expuestos y no expuestos, calculando a partir de ellas una serie de medidas de asociación y de medidas de impacto características.

La medida de asociación es el riesgo relativo (RR), que es la proporción entre la incidencia de expuestos (Ie) y no expuestos (I0): RR = Ie/I0. Esta medida nos permite estimar la fuerza de la asociación entre la exposición al factor y el efecto, pero no nos informa sobre el impacto potencial que tiene la exposición sobre la salud de la población. Para esto debemos recurrir a las medidas de impacto, fundamentalmente la diferencia de incidencias (DI) y la proporción atribuible al factor en el grupo expuesto (PAE) o en la población (PAP).

La DI sería, como su nombre indica, la diferencia entre la incidencia de expuestos y no expuestos (Ie-I0). Esta medida, que es el equivalente a la reducción absoluta del riesgo de los ensayos clínicos, nos cuantifica la diferencia de incidencia que puede atribuirse al factor estudiado. Aunque puede sonar parecido al RR, en realidad son dos medidas bien diferentes. Veámoslo con un ejemplo. Supongamos dos estudios E1 y E2. Aunque el RR es igual a 3 en los dos estudios, la DI en E1 es del 40% mientras que en E2 es del 2%, con lo que el exceso de riesgo en los expuestos es mucho mayor en el primer estudio que en el segundo, a pesar de que los RR sean iguales en ambos. Digamos que el RR es más informativo para determinar posibles causas de un efecto, mientras que la DI, que depende también de la incidencia, es más útil desde el punto de vista epidemiológico para calcular los efectos sobre grupos de población.

La PAE es la DI respecto al grupo de expuestos y nos indica el riesgo de presentar el efecto en los expuestos que se debe específicamente a eso, a haber estado expuesto. Esta medida puede calcularse también a partir del RR entre expuestos y no expuestos.

Por su parte, la PAP nos da una idea del efecto que se produciría en la población (cuánto disminuiría la enfermedad) si pudiésemos eliminar totalmente la exposición al factor estudiado.

Como vemos, pues, los estudios de cohortes son muy útiles para calcular la asociación y el impacto entre efecto y exposición pero, cuidado, no sirven para establecer relaciones causales. Para eso son necesarios otros tipos de estudios.

El problema con los estudios de cohortes es que son difíciles (y costosos) de realizar de forma adecuada, suelen requerir muestran grandes y, a veces, periodos de seguimiento prolongados (con el consiguiente riesgo de pérdidas). Además, son poco útiles para enfermedades raras. Y no debemos olvidar que no nos permiten establecer relaciones de causalidad con la seguridad suficiente, aunque para ello sean mejores que sus primos los estudios de casos y controles, pero esa es otra historia…