Ciencia sin seso… locura doble

Píldoras sobre medicina basada en pruebas

Entradas etiquetadasRegresión logística
image_pdf

Una relación simple

Hoy vamos a volver a hablar de la relación que puede existir entre dos variables. Vimos en una entrada anterior como podíamos medir la relación entre dos variables mediante el procedimiento de correlación, que nos medía la fuerza de relación entre dos variables cuando ninguna de las dos puede considerarse predictora de la otra. Esto es, cuando los valores de una no nos sirven para calcular los valores de la otra, aunque las dos varíen de una forma predecible.

Una cosa parecida, de la que vamos a hablar en esta entrada, es la regresión. Esta no solo explica la relación que hay entre dos variables, sino que podemos cuantificar cómo varía una de las variables, que llamaremos dependiente, con las variaciones de la otra variables, que será la independiente.

Pero todavía podemos llegar un paso más allá: los valores de la variable independiente nos pueden servir para predecir el correspondiente valor de la variable dependiente. Supongamos que medimos peso y talla y calculamos el modelo de regresión entre el peso y la talla. Si sabemos la talla de un individuo podemos utilizar la ecuación de regresión para estimar cuál será su peso (en este caso la talla es la variable independiente y el peso la dependiente).

Si llamamos x a la variable independiente e y a la variable dependiente, los modelos de regresión simple pueden representarse mediante la siguiente ecuación:

Función(y) = a + bx

En esta ecuación, a representa el valor de la función de y cuando x vale cero. Se suele llamar interceptor porque es el punto donde la representación gráfica de la recta de regresión cruza el eje de las y. Por su parte, b representa la llamada pendiente, que es la cantidad que varía y con las variaciones de x (si x aumenta en b unidades, y aumenta en b unidades).

¿Y qué significa función(y)?. Pues depende del tipo de variable que sea la variable dependiente. Sabemos que las variables se clasifican en cuantitativas (o continuas), cualitativas (nominales u ordinales) y de tiempo a suceso (también llamadas de supervivencia). Pues bien, según el tipo de la variable dependiente la función(y) será diferente porque aplicaremos un modelos de regresión simple diferente.

En el caso de variables continuas, el modelo de regresión que aplicamos es el de regresión lineal simple y la función de y será su media aritmética. La ecuación será la siguiente:

y = a + bx

Volviendo al ejemplo del peso y la talla, si sustituimos x por el valor de talla deseado y resolvemos la ecuación obtendremos el peso medio de los individuos de esa talla.

En el caso de que la variable dependiente sea cualitativa binaria utilizaremos un modelo de regresión logística. En este caso codificaremos la variable dependiente como cero y uno y la función de y ya no será la media, sino el logaritmo neperiano de la odds ratio del valor uno de la variable. Imaginemos que calculamos la relación entre peso (variable independiente) y sexo (variable dependiente). En este caso podríamos codificar como uno si es mujer y cero si es hombre, representando la recta de regresión de la siguiente forma:

Ln(OR) = a + bx

Si sustituimos x por el peso en cuestión y resolvemos la ecuación, obtendremos el logaritmo de la OR de ser mujer (el valor 1). Para obtener la OR debemos elevar el número e al resultado de la ecuación (hacer el antilogaritmo), obteniendo así la OR de que sea mujer. A partir de aquí es sencillo calcular el valor de la probabilidad de que sea mujer (p = OR/1+OR)  u hombre (uno menos el valor de la probabilidad de que sea mujer).

Esta función del ln(OR) se expresa en muchas ocasiones como ln(p/1-p), ya que la odds ratio es la probabilidad de que un suceso ocurra (p) dividida de la probabilidad de que no ocurra (1-p). A esta función se la denomina logit, por lo que podemos ver también representada la regresión logística de la siguiente forma:

Logit(y) = a + bx

Por último, podemos encontrarnos el caso de que la variable dependiente sea una variable de tiempo a suceso. En este caso hay que utilizar un modelo de regresión de riesgos proporcionales de Cox. La estructura es muy similar a la de la regresión logística, solo que la función de y es el logaritmo de la hazard ratio en lugar del de la odds ratio:

Ln(HR) = a + bx

Igual que hacíamos con la regresión logística, para calcular el valor de la hazard ratio hay que hacer el antilogaritmo natural del producto de la ecuación de regresión (e elevado al resultado de la ecuación).

Y, aunque hay muchos más, estos son los tres modelos de regresión más utilizados. En todos estos casos hemos hablado de ecuaciones con una variable independiente, por lo que decimos que hablamos de regresión simple. Pero podemos meter todas las variables independientes que queramos, según la siguiente fórmula:

Función(y) = a + bx1 + cx2 + … + nxn

Claro que ya no hablaríamos de regresión simple, sino de regresión múltiple, pero todo lo que hemos descrito sería igual de aplicable.

Y aquí lo vamos a dejar. Podríamos hablar del valor del interceptor y de la pendiente según la variable independiente sea continua o cualitativa, ya que se leen de forma un poco diferente. Pero esa es otra historia…