Ciencia sin seso… locura doble

Píldoras sobre medicina basada en pruebas

Entradas etiquetadast de Student
image_pdf

Ni tanto ni tan calvos

¿Os habéis preguntado alguna vez por qué la gente se queda calva, especialmente los varones a determinada edad?. Creo que tiene algo que ver con las hormonas. El caso es que es algo que suele gustar poco al afectado, y eso que hay una creencia popular que dice que los calvos son más inteligentes. A mí me parece que no tiene nada de malo ser calvo (es mucho peor ser gilipollas), claro que yo tengo todo mi pelo en la cabeza.

Siguiendo el hilo de la calvicie, supongamos que queremos saber si el color de pelo tiene algo que ver con quedarse calvo antes o después. Montamos un ensayo absurdo en el que reunimos 50 rubios y 50 morenos para estudiar cuántos se quedan calvos y en qué momento lo hacen.

Este ejemplo nos sirve para ilustrar los diferentes tipos de variables que podemos encontrarnos en un ensayo clínico y los diferentes métodos que debemos utilizar para comparar cada una de ellas.

Algunas variables son de tipo cuantitativo continuo. Por ejemplo, el peso de los participantes, su talla, su sueldo, el número de pelos por centímetro cuadrado, etc. Otras son de tipo cualitativo, como el color de pelo. En nuestro caso lo simplificaríamos a una variable binaria: rubio o moreno. Por último, encontramos variables llamadas de tiempo a evento, que nos muestran el tiempo que tardan los participantes en sufrir el evento en estudio, en nuestro caso, la calvicie.

Pues bien, a la hora de comparar si existen diferencias entre estas variables entre los dos grupos el método que elijamos vendrá determinado por el tipo de variable que estemos considerando.

Si queremos comparar una variable continua como la edad o el peso entre calvos y peludos, o entre rubios y morenos, tendremos que utilizar la prueba de la t de Student, siempre que nuestros datos se ajusten a una distribución normal. En el caso de que no sea así, la prueba no paramétrica que tendríamos que utilizar es la de Mann-Withney.

¿Y qué pasa si queremos comparar varias variables continuas a la vez?. Pues que podremos utilizar la regresión lineal múltiple para hacer las comparaciones entre variables.

En el caso de las variables cualitativas el enfoque es diferente. Para saber si existe dependencia estadísticamente significativa entre dos variables tendremos que construir la tabla de contingencia y recurrir a la prueba de la chi-cuadrado o a la prueba exacta de Fisher, según la naturaleza de los datos. Ante la duda podemos hacer siempre la prueba de Fisher. Aunque implica un cálculo más complejo, esto no es problema para cualquiera de los paquetes estadísticos disponibles hoy en día.

Otra posibilidad es calcular una medida de asociación como el riesgo relativo o la odds ratio con sus correspondientes intervalos de confianza. Si los intervalos no cruzan la línea de efecto nulo (el uno), consideraremos que la asociación es estadísticamente significativa.

Pero puede ocurrir que lo que queramos comparar sean varias variables cualitativas. En estos casos podremos utilizar un modelo de regresión logística.

Por último, vamos a hablar de las variables de tiempo a evento, algo más complicadas de comparar. Si utilizamos una variable como puede ser el tiempo que tardan en quedarse calvos nuestros sujetos podemos construir una curva de supervivencia o de Kaplan-Meier, que nos muestra de forma gráfica que porcentaje de sujetos queda en cada momento sin presentar el evento (o que porcentaje ya lo ha presentado, según como la leamos). Ahora bien, podemos comparar las curvas de supervivencia de rubios y morenos y ver si existen diferencias en la velocidad a la que se quedan calvos los dos grupos. Para esto utilizamos la prueba de los rangos logarítmicos, más conocida por su nombre en inglés: log rank test.

Este método se basa en la comparación entre las dos curvas en base a las diferencias entre los valores observados y los esperados si la supervivencia (la producción del evento en estudio, que no tiene porqué ser muerte) fuese igual en los dos grupos. Con este método podemos obtener un valor de p que nos indica si la diferencia entre las dos curvas de supervivencia es o no estadísticamente significativa, aunque no nos dice nada de la magnitud de la diferencia.

El caso de cálculo más complejo sería el supuesto de que queramos comparar más de dos variables. Para el análisis multivariado hay que servirse de un modelo de regresión de riesgos proporcionales de Cox. Este modelo es más complejo que los anteriores pero, una vez más, los programas informáticos lo llevan a cabo sin la menor dificultad si les introducimos los datos adecuados.

Y vamos a dejar a los calvos tranquilos de una vez. Podríamos hablar más acerca de las variables de tiempo a evento. Las curvas de Kaplan-Meier nos dan una idea de quién va presentando el evento a lo largo del tiempo, pero no nos dicen nada del riesgo de presentarlo en cada momento. Para eso necesitamos otro indicador, que es el cociente de riesgos instantáneos o hazard ratio. Pero esa es otra historia…

La gran familia

Que no se confundan los cinéfilos. No vamos a hablar de aquella película del año 1962 en la que el pequeño Chencho se perdía en la Plaza Mayor por Navidades y en la que se tiraban por lo menos hasta el verano hasta que lo encontraban, en gran parte gracias al tesón buscador del abuelo. Hoy vamos a hablar de otra familia más relacionada con las funciones de densidad de probabilidad y espero que no acabemos tan perdidos como el pobre Chencho de la película.

No cabe duda de que la reina de las funciones de densidad es la distribución normal, la de forma de campana. Esta es una distribución de probabilidad que se definía por su media y su desviación estándar y que está en el centro de todo el cálculo de probabilidades y de inferencia estadística. Pero hay otras funciones continuas de probabilidad que se parecen algo o mucho a la distribución normal y que también son muy utilizadas cuando se realiza contraste de hipótesis.

La primera de la que vamos a hablar es la distribución de la t de Student. Para los curiosos de la historia de la ciencia os diré que el inventor de la t realmente se llamaba William Sealy Gosset, pero como debía gustarle poco su nombre, firmaba sus escritos con el pseudónimo de Student. De ahí que el estadístico se conozca como la t de Student.normal_studentnormal_student

La forma de su función de densidad es la de una campana simétrica distribuida alrededor de la media. Es muy parecida a la curva normal, aunque con unas colas más pobladas, motivo que ocasiona que las estimaciones con esta distribución tengan menos precisión con muestras pequeñas, ya que tener más datos en las colas implica la posibilidad siempre de tener resultados alejados de la media con más probabilidad. Hay infinitas funciones de distribución de la t de Student, caracterizadas por la media, la varianza y los grados de libertad, pero cuando la muestra es superior a 30 (cuando aumentan los grados de libertad), la t se parece tanto a la normal que podemos utilizar una normal sin cometer grandes errores.

La t de Student se utiliza para comparar medias de poblaciones que se distribuyen de forma normal cuando los tamaños muestrales son pequeños o cuando se desconoce el valor de la varianza poblacional. Y esto funciona así porque si a una muestra de variables le restamos la media y la dividimos por el error estándar, el valor que obtenemos sigue esta distribución.

Otro miembro de esta familia de distribuciones continuas es la chi-cuadrado, que juega también un papel muy importante en estadística. Si tenemos una muestra de variables que siguen una distribución normal, las elevamos al cuadrado y las sumamos, la suma sigue una distribución de la chi-cuadrado con un número de grados de libertad igual al tamaño muestral. En la práctica, cuando tenemos una serie de valores de una variable, podemos restarle los valores esperados de esa variable bajo el supuesto de nuestra hipótesis nula, elevar la diferencias al cuadrado, sumarlas y ver la probabilidad del valor obtenido según la función de densidad de la chi-cuadrado, con lo que podremos así decidir si rechazamos o no nuestra hipótesis nula.

Esta aplicación tiene tres utilidades básicas: la determinación de la bondad del ajuste de una población a una teórica, la prueba de homogeneidad de dos poblaciones y el contraste de independencia de dos variables.

Al contrario que la normal, la función de densidad de la chi-cuadrado solo tiene valores positivos, por lo que es asimétrica con una larga cola hacia la derecha. Claro que la curva se va haciendo cada vez más simétrica al aumentar los grados de libertad, pareciéndose cada vez más a una distribución normal.f_chi

La última de la que vamos a hablar hoy es la distribución de la F de Snédecor. En esta no hay sorpresas de nombres, aunque parece que en la invención de este estadístico participó también un tal Fisher.

Esta distribución está más relacionada con la chi-cuadrado que con la normal, ya que es la función de densidad que sigue el cociente de dos distribuciones de chi-cuadrado. Como es fácil de entender, solo tiene valores positivos y su forma depende del número de grados de libertad de las dos distribuciones de la chi-cuadrado que la determinan. Esta distribución se utiliza para el contraste de varianzas (ANOVA).

En resumen, vemos que hay varias funciones de densidad muy parecidas que sirven para calcular probabilidades, por lo que son útiles en diversos contrastes de hipótesis. Hay muchas más, como la normal bivariada, la binomial negativa, la distribución uniforme, la beta o la gamma, por nombrar algunas. Pero esa es otra historia…