Ciencia sin seso… locura doble

Píldoras sobre medicina basada en pruebas

Entradas etiquetadasVarianza
image_pdf

El juego de las potencias

Los números son una cosa muy curiosa. Parece increíble a veces lo que se puede conseguir haciendo operaciones con algunos de ellos. Incluso puedes obtener otros números diferentes que expresan cosas distintas. Este es el caso del proceso mediante el cual podemos tomar los valores de una distribución y, a partir de la media aritmética (una medida de centralización) calcular cómo se separan de ella el resto de los valores e ir elevándolos a potencias sucesivas para obtener medidas de dispersión e, incluso, de simetría. Ya sé que parece mentira, pero os juro que es verdad. Lo acabo de leer en un libro bastante gordo. Os cuento cómo…

Una vez que tenemos la media aritmética podemos calcular el promedio de separación de cada valor respecto a ella. Restamos a cada valor la media y lo dividimos por el total de valores (es como calcular la media aritmética de las desviaciones de cada valor respecto a la media de la distribución). Pero hay un pequeño problema: como la media siempre está en medio (de ahí su nombre), las diferencias de los valores mayores (que serán positivas) se anularán con las de los valores menores (que serán negativas) y el resultado será siempre cero. Es lógico, y es una propiedad intrínseca de la media, que se aleja de todos una cantidad promedio igual. Como no podemos cambiar este carácter de la media, lo que sí podemos hacer es calcular el valor absoluto de cada resta antes de sumarlas. Calculamos así la desviación media, que es el promedio de los valores absolutos de las desviaciones de los valores con respecto a la media aritmética.

Y aquí empieza el juego de las potencias. Si en lugar de hacer el valor absoluto de las rectas las elevamos al cuadrado antes de sumarlas podemos calcular la varianza, que es la media de las desviaciones al cuadrado con respecto a la media aritmética. Ya sabemos que si hacemos la raíz cuadrada de la varianza (para recuperar las unidades originales de la variable) obtenemos la desviación estándar, que es la reina de las medidas de dispersión.

¿Y si elevamos las diferencias al cubo en lugar de al cuadrado?. Pues calcularemos el promedio del cubo de las desviaciones de los valores con respecto a la media. Si pensamos un poco en seguida nos daremos cuenta de que al elevar al cubo no perdemos los signos negativos. De esta forma, si hay predominio de valores menores (la distribución está sesgada hacia la izquierda) el resultado será negativo y, por el contrario, si predominan los valores mayores, positivo (la distribución estará sesgada hacia la derecha). Un último detalle: para poder comparar este índice de simetría con otras distribuciones debemos estandarizarlo dividiéndolo por el cubo de la desviación típica, según la fórmula que os pongo en el recuadro adjunto. La verdad es que, viéndola, acojona un poco, pero no os preocupéis, los programas de estadística pueden con esto y con cosas peores.

Y como ejemplo de cosa peor, ¿qué pasa si elevamos las restas a la cuarta potencia en lugar de al cubo?. Pues calcularemos el promedio de la cuarta potencia de las desviaciones de los valores con respecto a la media. Si nos paramos a pensar un segundo, rápidamente entenderemos su utilidad. Si todos los valores están muy cerca de la media, al multiplicarlos por sí mismos cuatro veces (elevarlos a la cuarta potencia) se harán más pequeños que si están muy alejados de la media. Así, si hay muchos valores cerca de la media (la curva de la distribución será más puntiaguda) el valor será menor que si los valores están más dispersos. Este parámetro puede estandarizarse dividiéndolo por la cuarta potencia de la desviación estándar para obtener el apuntamiento o curtosis, lo que me da pie a introducir tres palabros más: si la distribución es muy puntiaguda se denominará leptocúrtica, si los valores están dispersos por los extremos la llamaremos platicúrtica y, si ni una cosa ni la otra, mesocúrtica.

¿Y si elevamos las restas a la quinta potencia?. Pues no sé deciros qué ocurriría. Afortunadamente, y hasta donde yo sé, a nadie se le ha ocurrido todavía semejante ordinariez.

Todo este cálculo de medidas de centralización, dispersión y simetría puede parecer el delirio de alguien con muy poco trabajo, pero no os engañéis: son muy importantes, no solo para resumir de forma adecuada una distribución, sino para determinar el tipo de prueba estadística que debemos utilizar cuando queramos hacer un contraste de hipótesis. Pero esa es otra historia…

No todas las desviaciones son perversas

Incluso me atrevería a decir que hay desviaciones muy necesarias. Pero que nadie se entusiasme antes de tiempo. Aunque haya podido parecer otra cosa, vamos a hablar de cómo varían los valores de una variable cuantitativa en una distribución.

Cuando obtenemos los datos de un parámetro determinado en una muestra y queremos dar una idea resumida de cómo se comporta, lo primero que se nos ocurre es calcular una medida que la represente, así que echamos mano de la media, la mediana o cualquier otra medida de centralización.

Sin embargo, el cálculo del valor central da poca información si no lo acompañamos de otro que nos informe sobre la heterogeneidad de los resultados dentro de la distribución. Para cuantificar el grado de variación, los matemáticos, con muy poca imaginación, han inventado una cosa que llaman la varianza.

Para calcularla se restaría la media al valor de cada individuo con la idea de sumar todas estas restas y dividirlas entre el número de mediciones. Es como calcular la media de las diferencias de cada uno respecto al valor central de la distribución. Pero surge un pequeño problema: como los valores están por encima y por debajo de la media (por obligación, que para eso es la media), las diferencias positivas y negativas se anularían al sumarlas, con lo que obtendríamos un valor próximo a cero si la distribución es simétrica aunque el grado de variación fuese grande. Para evitar esto lo que se hace es elevar las restas al cuadrado antes de sumarlas, con lo que desaparecen los signos negativos y la suma siempre da un valor relacionado con la amplitud de las diferencias. Esto es lo que se conoce como varianza.

Por ejemplo, supongamos que medimos la presión arterial sistólica a 200 escolares seleccionados al azar y obtenemos una media de 100 mmHg. Nos ponemos a restar de cada valor la media, lo elevamos al cuadrado, sumamos todos los cuadrados y dividimos el resultado por 200 (el número de determinaciones). Obtenemos así la varianza, por ejemplo: 100 mmHg2. Y yo me pregunto, ¿qué leches es un milímetro de mercurio al cuadrado?. La varianza medirá bien la dispersión, pero no me negaréis que es un poco difícil de interpretar. Una vez más, algún genio matemático acude al rescate y discurre la solución: hacemos la raíz cuadrada de la varianza y así recuperamos las unidades originales de la variable. Acabamos de encontrarnos con la más famosa de las desviaciones: la desviación típica o estándar. En nuestro caso sería de 10 mmHg. Si consideramos las dos medidas nos hacemos idea de que la mayor parte de los escolares tendrán probablemente tensiones próximas a la media. Si hubiésemos obtenido una desviación típica de 50 mmHg pensaríamos que hay mucha variación individual de los datos de presión arterial, aunque la media de la muestra fuese la misma.

Un detalle para los puristas. La suma del cuadrado de las diferencias suele dividirse por el número de casos menos uno (n-1) en lugar de por el número de casos (n), que podría parecer más lógico. ¿Y por qué?. Capricho de los matemáticos. Por alguna arcana razón se consigue que el valor obtenido esté más próximo al valor de la población del que procede la muestra.

Ya tenemos, por tanto, los dos valores que nos definen nuestra distribución. Y lo bueno es que, no solo nos dan una idea del valor central y de la dispersión, sino de la probabilidad de encontrar un individuo de la muestra con un determinado valor.  Sabemos que el 95% tendrán un valor comprendido entre la media ± 2 veces la desviación típica (1,96 veces, para ser exactos) y el 99% entre la media ± 2,5 veces la desviación (2,58 veces, en realidad).

Esto suena peligrosamente parecido a los intervalos de confianza del 95% y 99%, pero no debemos confundirlos. Si repetimos el experimento de la tensión en escolares un número muy grande de veces, obtendremos una media ligeramente diferente cada vez. Podríamos calcular la media de los resultados de cada experimento y la desviación estándar de ese grupo de medias. Esa desviación estándar es lo que conocemos como el error estándar, y nos sirve para calcular los intervalos de confianza dentro de los cuales está el valor de la población de la que procede la muestra y que no podemos medir directamente ni conocer con exactitud. Por lo tanto, la desviación estándar nos informa de la dispersión de los datos en la muestra, mientras que el error estándar nos da idea de la precisión con que podemos estimar el verdadero valor de la variable que hemos medido en la población de la que procede la muestra.

Una última reflexión acerca de la desviación estándar. Aunque el valor de la variable en el 95% de la población esté en el intervalo formado por la media ± 2 veces la desviación típica, esta medida solo tiene sentido realizarla si la distribución es razonablemente simétrica. En caso de distribuciones con un sesgo importante la desviación típica pierde gran parte de su sentido y debemos utilizar otras medidas de dispersión, pero esa es otra historia…