Ciencia sin seso… locura doble

Píldoras sobre medicina basada en pruebas

Guardado porenero 2013
image_pdfimage_print

Las otras caras del rey

Ya hemos hablado otras veces del rey de los diseños experimentales, el ensayo clínico aleatorizado, en el que una población se divide al azar en dos grupos para someter a uno de ellos a la intervención en estudio y el otro sirve de grupo control. Esta es la cara más habitual del rey, el ensayo clínico en paralelo, que es ideal para la mayor parte de los estudios sobre tratamiento, para muchos de los de pronóstico o estrategias de prevención y, con sus peculiaridades, para los estudios para valoración de pruebas diagnósticas. Pero el rey es muy versátil y tiene otras muchas caras para adaptarse a diferentes situaciones.

Si lo pensamos un momento, el diseño ideal sería aquel que nos permitiese experimentar en el mismo individuo el efecto de la intervención de estudio y de la de control (el placebo o el tratamiento estándar), ya que el ensayo en paralelo es una aproximación que supone que los dos grupos responden igual a las dos intervenciones, lo que siempre supone un riesgo de sesgo que tratamos de minimizar con la aleatorización. Si tuviésemos una máquina del tiempo podríamos probar la intervención en todos, anotar lo que pasa, dar marcha atrás en el tiempo y volver a repetir el experimento con la intervención de control. Así podríamos comparar los dos efectos. El problema, los más atentos ya lo habréis imaginado, es que la máquina del tiempo no se ha inventado todavía.

Pero lo que sí se ha inventado es el ensayo clínico cruzado (el cross-over, para los que sepan inglés), en el que cada sujeto es su propio control. ensayo cruzadoEn este tipo de ensayo, cada sujeto es aleatorizado a un grupo, se realiza la intervención, se deja pasar un periodo de lavado o blanqueo y se realiza la otra intervención. Aunque esta solución no es tan elegante como la de la máquina del tiempo, los defensores de los ensayos cruzados se basan en que la variabilidad dentro de cada individuo es menor que la interindividual, con lo cual la estimación puede ser más precisa que la del ensayo en paralelo y, en general, se necesitan tamaños muestrales menores. Eso sí, antes de utilizar este diseño hay que hacer una serie de consideraciones. Lógicamente, el efecto de la primera intervención no debe producir cambios irreversibles ni ser muy prolongado, porque afectaría el efecto de la segunda. Además, el periodo de lavado tiene que ser lo suficientemente largo para evitar que quede ningún efecto residual de la primera intervención.

También hay que considerar si el orden de las intervenciones puede afectar el resultado final (efecto secuencia), con lo que solo serían válidos los resultados de la primera intervención. Otro problema es que, al tener mayor duración, las características del paciente pueden cambiar a lo largo del estudio y ser diferentes en los dos periodos (efecto periodo). Y, por último, ojo con las pérdidas durante el estudio, más frecuentes en estudios más largos y que tienen en los ensayos cruzados mayor repercusión sobre los resultados finales que en los ensayos en paralelo.

Imaginemos ahora que queremos probar dos intervenciones (A y B) en la misma población. ¿Podemos hacerlo con un mismo ensayo y ahorrar costes de todo tipo?. Pues sí, sí que podemos, solo tenemos que diseñar un ensayo clínico factorial. En este tipo de ensayo, cada participante es sometido a dos aleatorizaciones consecutivas: primero se le asigna a la intervención A o al placebo (P) y, segundo, a la intervención B o al placebo, con lo que tendremos cuatro grupos de estudio: AB, AP, BP y PP. Como es lógico, las dos intervenciones deben actuar por mecanismos independientes para poder valorar los resultados de los dos efectos de forma independiente.

Habitualmente se estudian una intervención relacionada con una hipótesis más plausible y madura y otra con una hipótesis menos contrastada, asegurando que la evaluación de la segunda no influye sobre los criterios de inclusión y exclusión de la primera. Además, no es conveniente que ninguna de las dos opciones tenga muchos efectos molestos o sea mal tolerada, porque la falta de cumplimiento de un tratamiento suele condicionar el mal cumplimiento del otro. En casos en que las dos intervenciones no se muestren independientes, podrían estudiarse los efectos por separado (AP frente a PP y BP frente a PP), pero se pierden las ventajas del diseño y aumenta el tamaño de muestra necesario.

En otras ocasiones puede ocurrir que tengamos prisa por acabar el estudio cuanto antes. Imaginemos una enfermedad muy mala que mata la gente a montones y nosotros estamos probando un nuevo tratamiento. Querremos tenerlo disponible cuanto antes (si funciona, claro), así que cada cierto número de participantes nos pararemos y analizaremos y, en el caso de que podamos demostrar ya la utilidad del tratamiento, daremos el estudio por concluido. Este es el diseño que caracteriza al ensayo clínico secuencial. Recordad que en el ensayo en paralelo lo correcto es calcular previamente el tamaño de la muestra. En este diseño, de mentalidad más bayesiana, se establece un estadístico cuyo valor condiciona una regla de finalización explícita, con lo que el tamaño de la muestra depende de las observaciones previas. Cuando el estadístico alcanza el valor prefijado nos vemos con la suficiente confianza como para rechazar la hipótesis nula y finalizamos el estudio. El problema es que cada parón y análisis aumenta el error de rechazarla siendo cierta (error de tipo 1), por lo que no se recomienda hacer muchos análisis intermedios. Además, el análisis final de los resultados es complejo porque los métodos habituales no sirven, sino que hay utilizar otros que tengan en cuenta los análisis intermedios. Este tipo de ensayos es muy útil con intervenciones de efecto muy rápido, por lo que es frecuente verlos en estudios de titulación de dosis de opiáceos, hipnóticos y venenos semejantes.

Hay otras ocasiones en las que la aleatorización individual no tiene sentido. Pensemos que hemos enseñado a los médicos de un centro de salud una nueva técnica para informar mejor a sus pacientes y queremos compararla con la antigua. No podemos decir al mismo médico que informe a unos pacientes de una forma y a otros de otra, ya que habría muchas posibilidades de que las dos intervenciones se contaminaran una a otra. Sería más lógico enseñar a los médicos de un grupo de centros y no enseñar a los de otro grupo y comparar los resultados. Aquí lo que aleatorizaríamos son los centros de salud para formar o no a sus médicos. Este es el diseño de ensayo con asignación por grupos. El problema de este diseño es que no tenemos muchas garantías de que los participantes de los diferentes grupos se comporten de forma independiente, por lo que el tamaño de la muestra necesaria puede aumentar mucho si existe gran variabilidad entre los grupos y poca dentro de cada grupo. Además, hay que hacer un análisis agregado de los resultados, ya que si se hace individual los intervalos de confianza se estrechan de forma artefactada y podemos encontrar significaciones estadísticas falsas. Lo habitual es calcular un estadístico sintético ponderado para cada grupo y hacer las comparaciones finales con él.

El último de la serie que vamos a tratar es el ensayo comunitario, en el cual la intervención se aplica a grupos de población. Al realizarse en condiciones reales sobre poblaciones tienen gran validez externa y permiten muchas veces recomendar medidas coste-eficientes basadas en sus resultados. El problema es que muchas veces es complicado establecer grupos de control, puede ser más difícil determinar el tamaño muestral necesario y es más complejo realizar inferencia causal a partir de sus resultados. Es el diseño típico para evaluar medidas de salud pública como la fluoración del agua, las vacunaciones, etc.

Como veis, el rey tiene muchas caras. Pero, además, tiene parientes de menor alcurnia, aunque no por ello menos dignos. Y es que tiene toda una familia de estudios cuasiexperimentales formada por ensayos que no son aleatorizados, o controlados, o ninguna de las dos cosas. Pero esa es otra historia…

¿A qué lo atribuye?

Parece que fue ayer. Yo empezaba mis andanzas en los hospitales y tenía mis primeros contactos con El Paciente. Y de enfermedades no es que supiese demasiado, por cierto, pero sabía sin necesidad de pensar en ello cuáles eran las tres preguntas con las que se iniciaba toda buena historia clínica: ¿qué le pasa?, ¿desde cuándo?, ¿a qué lo atribuye?.

Y es que la necesidad de saber el porqué de las cosas es inherente a la naturaleza humana y, por supuesto, tiene gran importancia en medicina. Todo el mundo está loco por establecer relaciones de causa-efecto, por lo que a veces estas relaciones se hacen sin mucho rigor y llega uno a creerse que el culpable de su catarro de verano es el fulano del supermercado, que ha puesto el aire acondicionado muy fuerte. Por eso es de capital importancia que los estudios sobre etiología se realicen y se valoren con rigor. Por eso, y porque cuando hablamos de causa nos referimos también a las que hacen daño, incluidas nuestras propias acciones (lo que la gente culta llama iatrogenia).

Esta es la razón de que los estudios de etiología/daño tengan diseños similares. El ideal sería el ensayo clínico, y podemos usarlo, por ejemplo, para saber si un tratamiento es la causa de la curación del paciente. Pero cuando estudiamos factores de riesgo o exposiciones nocivas, el principio ético de no maleficencia nos impide aleatorizar las exposiciones, por lo que hemos de recurrir a estudios observacionales como los estudios de cohortes o los estudios de casos y controles, aunque siempre el nivel de evidencia será menor que el de los estudios experimentales.

Para valorar críticamente un trabajo sobre etiología/daño recurriremos a nuestros consabidos pilares: validez, importancia y aplicabilidad.

En primer lugar nos centraremos en la VALIDEZ o rigor científico del trabajo, que debe responder a la pregunta sobre si el factor o la intervención que estudiamos fue la causa del efecto adverso o la enfermedad producida.

Como siempre, buscaremos unos criterios primarios de validez. Si estos no se cumplen, dejaremos el trabajo y nos dedicaremos a otra cosa más provechosa. Lo primero será determinar si se han comparado grupos similares en cuanto a otros factores determinantes del efecto diferentes de la exposición estudiada. La aleatorización de los ensayos clínicos facilita que los grupos sean homogéneos, pero no podemos contar con ella en el caso de estudios observacionales. La homogeneidad de las dos cohortes es fundamental y sin ella el estudio no tendrá validez. Uno siempre se puede defender diciendo que ha estratificado por las diferencias entre los dos grupos o que ha hecho un análisis multivariante para controlar el efecto de las variables confusoras conocidas pero, ¿qué hacemos con las desconocidas?. Lo mismo se aplica a los estudios de casos y controles, mucho más sensibles a sesgos y confusiones.

¿Se han valorado la exposición y el efecto de la misma forma en todos los grupos?. En los ensayos y cohortes debemos comprobar que el efecto ha tenido la misma probabilidad de aparecer y ser detectado en los dos grupos. Por otra parte, en los estudios de casos y controles es muy importante valorar adecuadamente la exposición previa, por lo que debemos investigar si ha habido posibles sesgos de recogida de datos, como el sesgo de memoria (los enfermos suelen acordarse mejor de sus síntomas pasados que los sanos). Por último, debemos considerar si el seguimiento ha sido lo suficientemente largo y completo. Las pérdidas durante el estudio, frecuentes en los diseños observacionales, pueden sesgar los resultados.

Si hemos contestado sí a las tres preguntas anteriores, pasamos a considerar los criterios secundarios de validez. Los resultados del estudio deben ser evaluados para determinar si la asociación entre exposición y efecto satisface las pruebas de causalidad razonable. HillUna herramienta que podemos usar son los criterios de Hill, que fue un señor que sugirió utilizar una serie de aspectos para tratar de distinguir el carácter causal o no causal de una asociación. Estos criterios son los siguientes: a) fuerza de la asociación, que es la razón de riesgos de exposición y efecto, que consideraremos en breve; b) consistencia, que es la reproducibilidad en poblaciones o situaciones diferentes; c) especificidad, que quiere decir que una causa produce un único efecto y no múltiples; d) temporalidad: es fundamental que la causa preceda al efecto; e) gradiente biológico: a más intensidad de causa, mayor intensidad de efecto; f) plausibilidad: tiene que tener su lógica según nuestros conocimientos biológicos; g) coherencia, que no entre en conflicto con lo que se sabe de la enfermedad o el efecto; h) evidencia experimental, difícil de obtener muchas veces en humanos por problemas éticos; y, finalmente, i) analogía con otras situaciones conocidas. Aunque estos criterios son ya viejecillos y alguno puede ser irrelevante (evidencia experimental o analogía) o erróneo (especificidad), pueden servirnos de orientación. El criterio de temporalidad sería necesario y se complementaría muy bien con los de gradiente biológico, plausibilidad y coherencia.

Otro aspecto importante es estudiar si, al margen de la intervención en estudio, se han tratado los dos grupos de forma similar. En este tipo de estudios en los que el doble ciego brilla por su ausencia es en los que hay más riesgo de sesgo debido a cointervenciones, sobre todo si éstas son tratamientos con un efecto mucho mayor que la exposición en estudio.

En cuanto a la IMPORTANCIA de los resultados, debemos considerar la magnitud y la precisión de la asociación entre exposición y efecto.

¿Cuál fue la fuerza de la asociación?. La medida de asociación más habitual es el riesgo relativo (RR), que podremos usar en los ensayos y en los estudios de cohortes. Sin embargo, en los estudios de casos y controles desconocemos la incidencia del efecto (ya se ha producido al realizarse el estudio), por lo que utilizamos la odds ratio (OR). Como ya sabemos, la interpretación de los dos parámetros es similar. Incluso los dos son similares cuando la frecuencia del efecto es muy baja. Sin embargo, cuánto mayor es la magnitud o la frecuencia del efecto, más diferentes son RR y OR, con la peculiaridad de que la OR tiende a sobreestimar la fuerza de la asociación cuando es mayor que 1 y a subestimarla cuando es menor que 1. De todas formas, estos caprichos de la OR excepcionalmente nos modificarán la interpretación cualitativa de los resultados.

Hay que tener en cuenta que en un ensayo es válido cualquier valor de OR o RR cuyo intervalo de confianza no incluya el uno, pero en estudios observacionales hay que ser un poco más exigente. Así, en un estudio de cohortes daremos valor a RR mayores o iguales a tres y, en uno de casos y controles, a OR de cuatro o más.

Otro parámetro muy útil (en ensayos y cohortes) es la diferencia de riesgos o diferencia de incidencias, que es una forma rebuscada de llamar a nuestra conocida reducción absoluta de riesgo (RAR), que nos permite calcular el NNT (o NND, número necesario a dañar), parámetro que mejor nos cuantifica la importancia clínica de la asociación. También, similar a la reducción relativa del riesgo (RRR), contamos con la fracción atribuible en los expuestos, que es el porcentaje de riesgo observado en los expuestos que se debe a la exposición.

Y, ¿cuál es la precisión de los resultados?. Como ya sabemos, tiraremos de nuestros queridos intervalos de confianza, que nos servirán para determinar la precisión de la estimación del parámetro en la población. Siempre es conveniente disponer de todos estos parámetros, por lo que deben figurar en el estudio o debe ser posible su cálculo a partir de los datos proporcionados por los autores.

Para finalizar, nos fijaremos en la APLICABILIDAD de los resultados en nuestra práctica.

¿Son aplicables los resultados a nuestros pacientes?. Buscaremos si hay diferencias que desaconsejen extrapolar los resultados del trabajo a nuestro medio. Además, consideraremos cuál es la magnitud del riesgo en nuestros pacientes en función de los resultados del estudio y de las características del paciente en quien queramos aplicarlos. Y, finalmente, teniendo todos estos datos en mente, habrá que pensar en nuestras condiciones de trabajo, las alternativas que tenemos y las preferencias del paciente para decidir si hay que evitar la exposición que se ha estudiado. Por ejemplo, si la magnitud del riesgo es alta y disponemos de una alternativa eficaz la decisión está clara, pero las cosas no siempre serán tan sencillas.

Como siempre, os aconsejo que utilicéis los recursos CASPe para valorar los trabajos, tanto las parrillas adecuadas a cada diseño para hacer la lectura crítica, como las calculadoras para valorar la importancia de los resultados.

Antes de acabar, dejadme aclarar una cosa. Aunque hemos comentado que en las cohortes y ensayos usamos RR y en los casos y controles usamos OR, podemos usar OR en cualquier tipo de estudio (no así RR, para los cuáles hay que conocer la incidencia del efecto). El problema es que son algo menos precisas, por lo que se prefieren los RR y los NNT, cuando es posible utilizarlos. De todas formas, la OR es cada vez más popular por otro motivo, y es su utilización en los modelos de regresión logística, que nos permiten obtener estimadores ajustados por las diferentes variables de confusión. Pero esa es otra historia…