Ciencia sin seso… locura doble

Píldoras sobre medicina basada en pruebas

Guardado poroctubre 2018

Poco ruido y muchas nueces

Sí, ya sé que el refrán dice justo lo contrario. Pero es que ese es precisamente el problema que tenemos con tanta nueva tecnología de la información. Hoy día cualquiera puede escribir y hacer público lo que se le pase por la cabeza, llegando a un montón de gente, aunque lo que diga sea una chorrada (y no, yo no me doy por aludido, ¡a mí no me lee ni mi cuñado!). Lo malo es que gran parte de lo que se escribe no vale un bit, por no referirnos a ningún tipo de excretas. Hay mucho ruido y pocas nueces, cuando a todos nos gustaría que ocurriese lo contrario.

Lo mismo pasa en medicina cuando necesitamos información para tomar alguna de nuestras decisiones clínicas. Vayamos a la fuente que vayamos, el volumen de información no solo nos desbordará, sino que encima la mayoría no nos servirá para nada. Además, incluso si encontramos un trabajo bien hecho es posible que no sea suficiente para contestar completamente a nuestra pregunta. Por eso nos gustan tanto las revisiones de la literatura que algunas almas generosas publican en las revistas médicas. Nos ahorran el trabajo de revisar un montón de artículos y nos resumen las conclusiones. Estupendo, ¿no? Pues a veces sí y a veces no. Como cuando leemos cualquier tipo de trabajo de literatura médica, siempre debemos hacer una lectura crítica de lo que tenemos delante y no confiar únicamente en el buen saber hacer de sus autores.

Las revisiones, de las que ya sabemos que hay dos tipos, tienen también sus limitaciones, que debemos saber valorar. La forma más sencilla de revisión, nuestra preferida cuando somos más jóvenes e ignorantes, es la que se conoce como revisión narrativa o de autor. Este tipo de revisiones las suele hacer, generalmente, un experto en el tema, que revisa la literatura y analiza lo que encuentra como lo cree conveniente (para eso es experto) y que hace un resumen de síntesis cualitativa con sus conclusiones de experto. Este tipo de revisiones son buenas para hacernos una idea general sobre un tema, pero no suelen servir para responder a preguntas concretas. Además, como no se especifica cómo se hace la búsqueda de la información, no podemos reproducirla ni comprobar que incluya todo lo importante que haya escrito sobre el tema. En estas podremos hacer poca lectura crítica, ya que no hay una sistematización precisa de cómo hay que elaborar estos resúmenes, así que tendremos que confiar en aspectos poco confiables como el prestigio del autor o el impacto de la revista donde se publica.

Según van aumentando nuestros conocimientos sobre los aspectos generales de los temas, nuestro interés va derivando hacia otro tipo de revisiones que nos proporcionan información más específica sobre aspectos que escapan a nuestro cada vez más amplio saber. Este otro tipo de revisión es la llamada revisión sistemática (RS), que se centra en una pregunta concreta, sigue una metodología de búsqueda y selección de la información claramente especificada y realiza un análisis riguroso y crítico de los resultados encontrados. Incluso, si los estudios primarios son lo suficientemente homogéneos, la RS va más allá de la síntesis cualitativa, realizando también un análisis de síntesis cuantitativa, que tiene el bonito nombre de metanálisis. Con estas revisiones sí que podemos hacer una lectura crítica siguiendo una metodología ordenada y preestablecida, de forma similar a como hacemos con otros tipos de estudios.

El prototipo de RS es la realizada por la Colaboración Cochrane, que ha elaborado una metodología específica que podéis consultar en los manuales disponibles en su página web. Pero, si queréis mi consejo, no os fieis ni de la Cochrane y haced una lectura crítica cuidadosa incluso si la revisión la han hecho ellos, no dándola por buena simplemente por su origen. Como dice uno de mis maestros en estas lides (seguro que sonríe si lee estas líneas), hay vida más allá de la Cochrane. Y, además, mucha y buena, añadiría yo.

Aunque las RS y los metanálisis imponen un poco al principio, no os preocupéis, se pueden valorar críticamente de una forma sencilla teniendo en cuenta los principales aspectos de su metodología. Y para hacerlo, nada mejor que revisar sistemáticamente nuestros tres pilares: validez, importancia y aplicabilidad.

En cuanto a la VALIDEZ, trataremos de determinar si la revisión nos da unos resultados no sesgados y que respondan correctamente a la pregunta planteada. Como siempre, buscaremos unos criterios primarios de validez. Si estos no se cumplen pensaremos si es ya la hora de pasear al perro: probablemente aprovechemos mejor el tiempo.

¿Se ha planteado claramente el tema de la revisión? Toda RS debe tratar de responder a una pregunta concreta que sea relevante desde el punto de vista clínico, y que habitualmente se plantea siguiendo el esquema PICO de una pregunta clínica estructurada. Es preferible que la revisión trate de responder solo a una pregunta, ya que si pretende responder a varias se corre el riesgo de que no responda adecuadamente a ninguna de ellas. Esta pregunta determinará, además, el tipo de estudios que debe incluir la revisión, por lo que debemos valorar si se ha incluido el tipo adecuado. Aunque lo más habitual es encontrar RS  de ensayos clínicos, pueden hacerse de otros tipos de estudios observacionales, de pruebas diagnósticas, etc. Los autores de la revisión deben especificar los criterios de inclusión y exclusión de los trabajos, además de considerar sus aspectos referentes al ámbito de realización, grupos de estudio, resultados, etc. Diferencias entre los trabajos incluidos en cuanto a los (P)pacientes, la (I)intervención o los (O)resultados hacen que dos RS que se plantean la misma preguntan puedan llegar a conclusiones diferentes.

Si la respuesta a las dos preguntas anteriores es afirmativa, pasaremos a considerar los criterios secundarios y dejaremos el paseo del perro para más tarde. ¿Se han incluido los estudios importantes que tienen que ver con el tema? Debemos comprobar que se ha realizado una búsqueda global y no sesgada de la literatura. Lo frecuente es hacer la búsqueda electrónica incluyendo las bases de datos más importantes (generalmente PubMed, Embase y la Cochrane Library), pero esta debe completarse con una estrategia de búsqueda en otros medios para buscar otros trabajos (referencias de los artículos encontrados, contacto con investigadores conocidos, industria farmacéutica, registros nacionales e internacionales, etc), incluyendo la denominada literatura gris (tesis, informes, etc), ya que puede haber trabajos importantes no publicados. Y que nadie se extrañe de esto último: está demostrado que los trabajos que obtienen conclusiones negativas tienen más riesgo de no publicarse, por lo que no aparecen en las RS. Debemos comprobar que los autores han descartado la posibilidad de este sesgo de publicación. En general, todo este proceso de selección se suele plasmar en un diagrama de flujo que muestra el devenir de todos los trabajos valorados en la RS.

Es muy importante que se haya hecho lo suficiente para valorar la calidad de los estudios, buscando la existencia de posibles sesgos. Para esto los autores pueden servirse de una herramienta diseñada ad hoc o, más habitualmente, recurrir a una que ya esté reconocida y validada, como la herramienta de detección de sesgo de la Colaboración Cochrane, en el caso de revisiones de ensayos clínicos. Esta herramienta valora cinco criterios de los estudios primarios para determinar su riesgo de sesgo: secuencia de aleatorización adecuada (previene el sesgo de selección), enmascaramiento adecuado (previene los sesgos de realización y detección, ambos sesgos de información), ocultamiento de la asignación (previene el sesgo de selección), las pérdidas durante el seguimiento (previene el sesgo de desgaste) y la información de datos selectiva (previene el sesgo de información). Los estudios se clasifican como de alto, bajo o indeterminado riesgo de sesgo según los aspectos más importantes de la metodología del diseño (ensayos clínicos en este caso).

Además, esto debe hacerse de forma independiente por dos autores y, de forma ideal, sin conocer los autores del trabajo o la revista de publicación de los estudios primarios de la revisión. Por último, debe quedar registrado el grado de concordancia entre los dos revisores y qué hacían si no se ponían de acuerdo (lo más habitual suele ser recurrir a un tercero, que seguramente será el jefe de los dos).

Para finalizar el apartado de validez interna o metodológica, en el caso de que se hayan combinado los resultados de los estudios para sacar conclusiones comunes con un metanálisis, debemos preguntarnos si era razonable combinar los resultados de los estudios primarios. Es fundamental, para poder sacar conclusiones de datos combinados, que los trabajos sean homogéneos y que las diferencias entre ellos sean debidas únicamente al azar. Aunque cierta variabilidad de los estudios aumenta la validez externa de las conclusiones, no podremos unificar los datos para el análisis si la variabilidad es grande. Hay numerosos métodos para valorar la homogeneidad en los que no vamos a entrar ahora, pero sí que vamos a insistir en la necesidad de que los autores de la revisión lo hayan estudiado de forma adecuada.

Resumiendo, los aspectos fundamentales que tendremos que analizar para valorar la validez de una RS serán: 1) que los objetivos de la revisión estén bien definidos en términos de población, intervención y medición del resultado; 2) que la búsqueda bibliográfica haya sido exhaustiva; 3) que hayan sido adecuados los criterios de inclusión y exclusión de estudios primarios en la revisión; y 4) que se haya comprobado también la validez interna o metodológica de los estudios incluidos. Además, si la RS incluye un metanálisis, revisaremos los aspectos metodológicos que ya vimos en una entrada anterior: conveniencia de combinar los estudios para realizar una síntesis cuantitativa, evaluación adecuada de la heterogeneidad de los estudios primarios y utilización de un modelo matemático adecuado para combinar los resultados de los estudios primarios (ya sabéis, aquello de los modelos de efecto fijo y de efectos aleatorios).

En cuanto a la IMPORTANCIA de los resultados debemos considerar cuál es el resultado global de la revisión y si la interpretación se ha hecho de forma juiciosa. La RS debe proporcionar una estimación global del efecto de la intervención en base a una media ponderada de los artículos de calidad incluidos. Lo más frecuente es que se expresen medidas relativas como el riesgo relativo o la odds ratio, aunque lo ideal es que se complementen con medidas absolutas como la reducción absoluta del riesgo o el número necesario a tratar (NNT). Además, hay que valorar la precisión de los resultados, para lo que recurriremos a nuestros queridos intervalos de confianza, que nos darán una idea de la precisión de la estimación de la verdadera magnitud del efecto en la población. Como veis, la forma de valorar la importancia de los resultados es prácticamente la misma que la de valorar la importancia de los resultados de los estudios primarios. En este caso ponemos ejemplos de ensayos clínicos, que es el tipo de estudio que veremos más frecuentemente, pero recordad que puede haber otros tipos de estudios que pueden expresar mejor la importancia de sus resultados con otros parámetros. Eso sí, los intervalos de confianza siempre nos ayudarán a valorar la precisión de los resultados.

Los resultados de los metanálisis se suelen representar de una manera estandarizada, recurriendo habitualmente al llamado diagrama de efectos, mucho más famoso por su nombre en inglés: forest plot. Se dibuja un gráfico con una línea vertical de efecto nulo (en el uno para riesgo relativo y odds ratio y en el cero para diferencias de medias) y se representa cada estudio como una marca (su resultado) en medio de un segmento (su intervalo de confianza). Los estudios con resultados con significación estadística son los que no cruzan la línea vertical. Generalmente, los estudios más potentes tienen intervalos más estrechos y contribuyen más al resultado global, que se expresa como un diamante cuyos extremos laterales representan su intervalo de confianza. Solo los diamantes que no crucen la línea vertical tendrán significación estadística. Además, cuanto más estrechos, más precisión. Y, por último, cuánto más se alejen de la línea de efecto nulo, más clara será la diferencia entre los tratamientos o las exposiciones comparadas.

Si queréis una explicación más detallada sobre los elementos que componen un forest plot, podéis acudir a la entrada anterior en la que lo explicábamos o a los manuales en línea de la Colaboración Cochrane.

Concluiremos la lectura crítica de la RS valorando la APLICABILIDAD de los resultados a nuestro medio. Habrá que preguntarse si podemos aplicar los resultados a nuestros pacientes y cómo van a influir en la atención que les prestamos. Tendremos que fijarnos si los estudios primarios de la revisión describen a los participantes y si se parecen a nuestros pacientes. Además, aunque ya hemos dicho que es preferible que la RS se oriente a una pregunta concreta, habrá que ver si se han considerado todos los resultados relevantes para la toma de decisiones en el problema en estudio, ya que a veces será conveniente que se considere alguna otra variable secundaria adicional. Y, como siempre, habrá que valorar la relación beneficios-costes-riesgos. El que la conclusión de la RS nos parezca válida no quiere decir que tengamos que aplicarla de forma obligada.

Si queréis valorar correctamente una RS sin olvidar ningún aspecto importante os recomiendo que uséis una lista de verificación como la PRISMA o alguna de las herramientas disponibles en Internet, como las parrillas que se pueden descargar de la página de CASPe, que son las que hemos utilizado para todo lo que hemos dicho hasta ahora.

La declaración PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses) consta de 27 ítems, clasificados en 7 secciones que hacen referencia a los apartados de título, resumen, introducción, métodos, resultados, discusión y financiación:

  1. Título: debe identificarse como RS, metanálisis o ambos. Si se especifica, además, que trata sobre ensayos clínicos, se priorizará sobre otros tipos de revisiones.
  2. Resumen: debe ser un resumen estructurado que debe incluir antecedentes, objetivos, fuentes de datos, criterios de inclusión, limitaciones, conclusiones e implicaciones. Debe constar también el número de registro de la revisión.
  3. Introducción: incluye dos ítems, la justificación del trabajo (qué se sabe, controversias, etc) y los objetivos (qué pregunta trata de responder en términos PICO de la pregunta clínica estructurada).
  4. Métodos. Es la sección con mayor número de ítems (12):

– Protocolo y registro: indicar el número de registro y su disponibilidad.

– Criterios de elegibilidad: justificación de las características de los estudios y los criterios de búsqueda empleados.

– Fuentes de información: describir las fuentes utilizadas y la última fecha de búsqueda.

– Búsqueda: estrategia completa de búsqueda electrónica, para que pueda ser reproducible.

– Selección de estudios: especificar el proceso de selección y los criterios de inclusión y exclusión.

– Proceso de extracción de datos: describir los métodos empleados para la extracción de los datos de los estudios primarios.

– Lista de datos: definir las variables empleadas.

– Riesgo de sesgo en los estudios primarios: describir el método utilizado y cómo se ha empleado en la síntesis de los resultados.

– Medidas de resumen: especificar las principales medidas de resumen empleadas.

– Síntesis de resultados: describir los métodos empleados para combinar los resultados.

– Riesgo de sesgo entre los estudios: describir sesgos que puedan afectar la evidencia acumulativa, como el sesgo de publicación.

– Análisis adicionales: si se hacen métodos adicionales (sensibilidad, metarregresión, etc) especificar cuáles fueron preespecificados.

  1. Resultados. Incluye 7 ítems:

– Selección de estudios: se expresa mediante un diagrama de flujo que valora el número de registros en cada etapa (identificación, cribado, elegibilidad e inclusión).

– Características de los estudios: presentar las características de los estudios de los que se extrajeron datos y sus citas bibliográficas.

– Riesgo de sesgo en los estudios: comunicar los riesgos en cada estudio y cualquier evaluación que se haga sobre el sesgo en los resultados.

– Resultados de los estudios individuales: datos de estudio para cada estudio o grupo de intervención y estimación del efecto con su intervalo de confianza. Lo ideal es acompañarlo de un forest plot.

– Síntesis de los resultados: presentar los resultados de todos los MA realizados con los intervalos de confianza y las medidas de consistencia.

– Riesgo de sesgo entre los sujetos: presentar cualquier evaluación que se haga del riesgo de sesgo entre los estudios.

– Análisis adicionales: si se han realizado, facilitar los resultados de los mismos.

  1. Discusión. Trata 3 ítems:

– Resumen de la evidencia: resumir los hallazgos principales con la fuerza de la evidencia de cada resultado principal y la relevancia desde el punto de vista clínico o de los grupos de interés principales (proveedores de cuidados, usuarios, decisores de salud, etc).

– Limitaciones: discutir las limitaciones de los resultados, de los estudios y de la revisión.

– Conclusiones: interpretación general de los resultados en contexto con otras evidencias y sus implicaciones para la futura investigación.

  1. Financiación: describir las fuentes de financiación y el papel que tuvieron en la realización de la RS.

Como tercera opción a estas dos herramientas, podéis utilizar también el ya mencionado manual de la Cochrane (Cochrane Handbook for Systematic Reviews of Interventions), disponible en su página web y cuya finalidad es ayudar a los autores de las revisiones Cochrane a trabajar de forma explícita y sistemática.

Como veis, no hemos hablado prácticamente nada del metanálisis, con todas sus técnicas estadísticas para valorar homogeneidad y sus modelos de efectos fijos y aleatorios. Y es que el metanálisis es una fiera a la que hay que echar de comer aparte, por lo que ya le dedicamos en su momento dos entradas para él solo que podéis consultar cuando queráis. Pero esa es otra historia…

¿Es grave, doctor?

Me pregunto cuántas veces habré escuchado esta pregunta o alguna de sus muchas variantes. Porque resulta que siempre estamos pensando en ensayos clínicos y en preguntas sobre diagnóstico y tratamiento, pero pensad si algún paciente os preguntó alguna vez si el tratamiento que le proponíais estaba refrendado por un ensayo clínico aleatorizado y controlado que cumple los criterios de la declaración CONSORT y tiene una buena puntuación en la escala de Jadad. A mí, al menos, no me ha pasado nunca. Pero sí que a diario me preguntan qué les va a ocurrir en el futuro.

Y de aquí deriva la importancia de los estudios sobre pronóstico. Tened en cuenta que no siempre se puede curar y que, por desgracia, muchas veces lo único que podemos hacer es acompañar y aliviar lo que podamos ante el anuncio de graves secuelas o de la muerte. Pero para esto es fundamental disponer de información de buena calidad sobre el futuro de la enfermedad de nuestro paciente. Esta información nos servirá también para calibrar los esfuerzos terapéuticos en cada situación en función de los riesgos y los beneficios. Y, además, los estudios sobre pronóstico sirven para comparar resultados entre servicios u hospitales diferentes. A nadie se le ocurre decir que un hospital es peor que otro porque su mortalidad es mayor sin comprobar antes que el pronóstico de sus pacientes sea semejante.

Antes de meternos con la lectura crítica de los artículos sobre pronóstico aclaremos la diferencia entre factor de riesgo y factor pronóstico. El factor de riesgo es una característica del ambiente o del sujeto que favorece el desarrollo de la enfermedad, mientras que el factor pronóstico es aquél que, una vez que se produce la enfermedad, influye sobre su evolución. Factor de riesgo y factor pronóstico son cosas diferentes, aunque a veces pueden coincidir. Lo que sí comparten los dos es el mismo diseño de tipo de estudio. Lo ideal sería utilizar ensayos clínicos, pero la mayor parte de las veces no podemos o no es ético aleatorizar los factores pronóstico o de riesgo. Pensemos que queremos demostrar el efecto deletéreo del alcohol sobre el hígado. La forma con mayor grado de evidencia de demostrarlo sería hacer dos grupos de participantes al azar y a uno hacerles beber 10 whiskies al día y al otro darles agua, para ver las diferencias en el daño hepático al cabo de, por ejemplo, un año. Sin embargo, a nadie se le escapa que no podemos hacer un ensayo clínico como este. No porque no podamos encontrar sujetos para la rama de intervención, sino porque la ética y el sentido común nos lo impiden.

Por este motivo lo habitual es que se usen estudios de cohortes: estudiaríamos qué diferencias a nivel del hígado puede haber entre individuos que beben y que no beben por elección propia. En los casos que precisan seguimientos muy largos o en los que el efecto que queremos medir es muy raro se pueden usar estudios de casos y controles, pero siempre serán menos potentes por tener más riesgo de sesgo. Siguiendo nuestro etílico ejemplo, estudiaríamos personas con y sin daño hepático y veríamos si alguno de los dos grupos estaba expuesto al alcohol.

Un estudio de pronóstico nos debe informar de tres aspectos: qué resultado queremos valorar, qué probabilidad hay de que suceda y en qué periodo de tiempo esperamos que pase. Y para valorarlo, como siempre, nos asentaremos sobre nuestros tres pilares: validez, importancia y aplicabilidad.

Para valorar la VALIDEZ tendremos primero en cuenta si cumple una serie de criterios primarios o de eliminación. Si la respuesta es no, tirad el artículo y mirad a ver qué chorrada nueva han escrito vuestros amigos en Facebook.

¿Está bien definida la muestra de estudio y es representativa de pacientes en un momento similar de la enfermedad? La muestra, que se suele denominar cohorte incipiente o cohorte de inicio, debe estar formada por un grupo amplio de pacientes en el mismo momento de la enfermedad, idealmente al inicio, y que se sigue de forma prospectiva. Debe estar bien especificado el tipo de pacientes incluidos, los criterios para diagnosticarlos y el método de selección. Además, debemos comprobar que el seguimiento haya sido lo suficientemente largo y completo como para observar el evento que estudiamos. Cada participante debe seguirse desde el inicio hasta que sale del estudio, ya sea porque se cure, porque presenta el evento o porque el estudio se acaba. Es muy importante tener en cuenta las pérdidas durante el estudio, muy habituales en diseños con seguimiento largo. El estudio debe proporcionar las características de los pacientes perdidos y los motivos para la pérdida. Si son similares a los que no se pierden, probablemente los resultados sean válidos. Si las pérdidas son de más de un 20% se suele hacer un análisis de sensibilidad utilizando el escenario de “el peor de los casos”: consideramos que todas las pérdidas han tenido mal pronóstico y recalculamos los resultados para ver si se modifican, en cuyo caso quedaría invalidado el estudio.

Una vez vistos estos dos aspectos, pasamos a los criterios secundarios de validez interna o rigor científico.

¿Se han medido los resultados de forma objetiva y no sesgada? Debe especificarse con claridad qué se va a medir y cómo antes de iniciar el estudio. Además, lo ideal es que la medición de los resultados se haga de forma ciega para el experimentador, que debe desconocer si el sujeto en cuestión está sometido a alguno de los factores pronósticos para evitar el sesgo de información. Si se está estudiando el riesgo de un determinado fármaco para producir fibrosis pulmonar, cuando valoremos la radiografía de un paciente conviene que no sepamos si toma el fármaco o no. Si los hallazgos son dudosos el saber que lo toma nos inclinará a diagnosticar el hallazgo positivamente o a magnificar más su intensidad.

¿Se han ajustado los resultados según todos los valores pronósticos relevantes? Hay que tener en cuenta todas las variables confusoras y los factores pronósticos que puedan influir en los resultados. En el caso de que se conozcan por estudios previos pueden tenerse en cuenta los factores conocidos. En caso contrario, los autores determinarán los efectos mediante análisis estratificado de los datos (el método más sencillo) o mediante el análisis multivariante (más potente y complejo), habitualmente mediante un modelo de riesgos proporcionales o de regresión de Cox. Aunque no vamos a entrar ahora en los modelos de regresión, sí que hay dos cosas sencillas que podemos tener en cuenta. La primera, estos modelos necesitan de un número determinado de eventos por cada variable incluida en el modelo, así que desconfiad cuando se analicen muchas variables, sobre todo con muestras pequeñas. La segunda, las variables las decide el autor y son diferentes de un trabajo a otro, por lo que tendremos que valorar si no se ha incluido alguna que pueda ser relevante para el resultado final.

¿Se han validado los resultados en otros grupos de pacientes? Cuando hacemos grupos de variables y empezamos a comparar unos con otros corremos el riesgo de que el azar nos juegue una mala pasada y nos muestre asociaciones que realmente no existen. Por eso, cuando se describe un factor de riesgo en un grupo (grupo de entrenamiento o derivación), conviene replicar los resultados en un grupo independiente (grupo de validación) para estar seguros de la relación.

A continuación, debemos fijarnos en cuáles son los resultados para determinar su IMPORTANCIA. Para esto comprobaremos si se proporciona la estimación de la probabilidad de que suceda el desenlace de estudio, la precisión de esta estimación y el riesgo asociado a los factores que modifican el pronóstico.

¿Se especifica la probabilidad del suceso en un periodo de tiempo determinado? Hay varias formas de presentar el número de sucesos que se producen durante el periodo de seguimiento. La más sencilla sería dar una tasa de incidencia (sucesos/persona/unidad de tiempo) o la frecuencia acumulada en un momento dado. Otra forma es dar la mediana de supervivencia, que no es más que el momento del seguimiento en el cuál el suceso se ha producido en la mitad de la cohorte (recordad que aunque hablemos de supervivencia, el suceso no tiene que ser obligatoriamente la muerte).

Para determinar la probabilidad de que se produzca el suceso en cada periodo y el ritmo al cual se va presentando pueden utilizarse curvas de supervivencia de varios tipos. Las tablas actuariales o de vida se utilizan para muestras grandes, cuando no sabemos el momento exacto del evento y con periodos de tiempo fijos. Sin embargo, probablemente nos encontremos con más frecuencia con las curvas de Kaplan-Meier, que miden mejor la probabilidad del suceso para cada momento concreto con muestras más pequeñas. Con este método se pueden proporcionar los cocientes de riesgos instantáneos en cada momento (las hazard ratios) y la mediana de supervivencia, además de otros parámetros según el modelo de regresión utilizado.

Para valorar la precisión de los resultados buscaremos, como siempre, los intervalos de confianza. Cuanto mayor sea el intervalo, menos precisa será la estimación de la probabilidad del suceso en la población general, que es lo que realmente nos interesa saber. Hay que tener en cuenta que el número de pacientes suele ser menor según pasa el tiempo, por lo que es habitual que las curvas de supervivencia sean más precisas al comienzo que al final del seguimiento. Por último, valoraremos cuáles son los factores que modifican el pronóstico. Lo correcto es representar todas las variables que puedan influir sobre el pronóstico con sus correspondientes medidas de asociación, que serán los que nos permitan evaluar la importancia clínica de esa asociación.

Por último, tendremos que considerar la APLICABILIDAD de los resultados. ¿Son aplicables a mis pacientes? Buscaremos las similitudes entre los pacientes del estudio y los nuestros y evaluaremos si las diferencias que encontremos nos permiten extrapolar los resultados a nuestra práctica. Pero además, ¿son útiles los resultados? El que sean aplicables no quiere decir que tengamos que ponerlos en práctica obligatoriamente, sino que tendremos que valorar cuidadosamente si nos van a ayudar a decidir qué tratamiento aplicar o a cómo informar a nuestro paciente o a sus familiares.

Como siempre, os recomiendo que uséis alguna plantilla, como las que proporciona CASPe, para realizar la lectura crítica de forma sistemática y no dejar ningún aspecto importante sin valorar.

Ya veis que los trabajos sobre pronóstico tienen mucha miga. Y eso que no hemos comentado prácticamente nada sobre modelos de regresión y curvas de supervivencia, que muchas veces son el núcleo del estudio estadístico de este tipo de trabajos. Pero esa es otra historia…