Ciencia sin seso… locura doble

Píldoras sobre medicina basada en pruebas

Guardado porseptiembre 2019

Idolatrada, pero incomprendida

La estadística se nos atraganta un poco a la mayoría de los que nos denominamos “clínicos”. Los conocimientos sobre el tema adquiridos durante nuestros años de formación hace tiempo que habitan en el mundo neblinoso del olvido. Recordamos vagamente términos como distribución de probabilidad, contraste de hipótesis, análisis de la varianza, regresión… Es por este motivo que siempre nos da un poco de aprensión cuando llegamos al apartado de métodos de los artículos científicos, en los que se detallan todas estas técnicas que, aunque nos resultan conocidas, no conocemos con la profundidad suficiente para interpretar correctamente sus resultados.

Menos mal que la Providencia nos ha puesto un salvavidas: nuestra querida e idolatrada p. ¿Quién no se habrá perdido con una descripción farragosa de métodos matemáticos para respirar, por fin, aliviado al encontrar el valor de p? Sobre todo, si la p es pequeña y tiene muchos ceros.

El problema con la p es que, aunque es unánimemente idolatrada, también es mayoritariamente incomprendida. Su valor es, con mucha frecuencia, malinterpretado. Y esto es así porque muchos albergamos ideas erróneas sobre lo que significa realmente el valor de p.

Vamos a intentar aclararlo.

Siempre que queremos saber algo sobre una variable, el efecto de una exposición, la comparación de dos tratamientos, etc., nos encontraremos con la ubicuidad del azar: está en todas partes y nunca podemos librarnos de él, aunque podemos intentar limitarlo y, desde luego, tratar de medir su efecto.

Pongamos un ejemplo para entenderlo mejor. Supongamos que hacemos un ensayo clínico para comparar el efecto de dos dietas, A y B, sobre la ganancia de peso en dos grupos de participantes. Simplificando, el resultado del ensayo tendrá una de las tres características: los de la dieta A ganan más peso, los de la dieta B ganan más peso, ambos grupos ganan igual peso (podría haber, incluso, una cuarta: los dos grupos pierden peso). En cualquier caso, siempre vamos a obtener un resultado diferente, aunque sea por azar (incluso en el supuesto de que las dos dietas sean iguales).

Imaginaos que los de la dieta A engordan 2 kg y los de la dieta B, 3 kg. ¿Se engorda más con la dieta B o la diferencia se debe al azar (muestras elegidas, variabilidad biológica, imprecisión de mediciones, etc.)? Aquí es donde entra nuestro contraste de hipótesis.

Cuando nosotros vamos a hacer el ensayo partimos de la hipótesis de igualdad, de no diferencia de efecto (se engorda igual con las dos dietas). Esto es lo que llamamos hipótesis nula (H0) que, repito para que quede claro, asumimos que es la cierta. Si la variable que estamos midiendo sigue una distribución de probabilidad conocida (normal, ji-cuadrado, t de Student, etc.), podemos calcular la probabilidad de presentarse cada uno de los valores de la distribución. En otras palabras, podemos calcular la probabilidad de obtener un resultado tan distinto de la igualdad como el que hemos obtenido, siempre bajo el supuesto de la H0.

Ese es el valor de p: la probabilidad de que la diferencia de resultado observada se deba al azar. Por convenio, si esa probabilidad es menor del 5% (0,05) nos parecerá poco probable que la diferencia se deba al azar y rechazaremos H0, la hipótesis de igualdad, aceptando la hipótesis alternativa (Ha) que, en este ejemplo, dirá que una dieta engorda más que la otra. Por otra parte, si la probabilidad es mayor del 5%, no nos sentiremos lo suficientemente seguros para afirmar que la diferencia no se debe a la casualidad, así que NO rechazamos H0 y nos quedamos con la hipótesis de igualdad: las dos dietas son similares.

Tened en cuenta que siempre nos movemos en el terreno de la probabilidad. Si la p es menor de 0,05 (estadísticamente significativa), rechazaremos H0, pero siempre con una probabilidad de cometer un error de tipo 1: dar por bueno un efecto que, en realidad, no existe (un falso positivo). Por otra parte, si p es mayor de 0,05, nos quedamos con H0 y decimos que no hay diferencia de efecto, pero siempre con una probabilidad de cometer un error de tipo 2: no detectar un efecto que, en realidad, existe (falso negativo).

Podemos ver, por tanto, que el valor de p es algo sencillo desde el punto de vista conceptual. Sin embargo, hay una serie de errores habituales sobre lo que representa o no representa el valor de p. Vamos a tratar de aclararlos.

Es falso que una p menor de 0,05 signifique que la hipótesis nula es falsa y una p mayor de 0,05 que la hipótesis nula es cierta. Como ya hemos mencionado, el abordaje es siempre probabilístico. La p < 0,05 solo quiere decir que, por convenio, es poco probable que H0 sea cierta, así que la rechazamos, aunque siempre con una pequeña probabilidad de equivocarnos. Por otra parte, si p > 0,05 tampoco se asegura que H0 sea cierta, ya que puede existir un efecto real y que el estudio no tenga potencia suficiente para detectarlo.

En este punto hay que recalcar un hecho: la hipótesis nula solo es falsable. Esto quiere decir que solo podemos rechazarla (con lo que nos quedamos con Ha, con una probabilidad de error), pero nunca podemos afirmar que es cierta. Si p > 0,05 no podremos rechazarla, así que nos mantendremos en el supuesto inicial de igualdad de efecto, que no podemos demostrar de una forma positiva.

Es falso que el valor de p tenga relación con la fiabilidad del estudio. Podemos pensar que las conclusiones del estudio serán más fiables cuanto menor sea el valor de p, pero tampoco es cierto. En realidad, el valor de p es la probabilidad de obtener un valor semejante por azar si repetimos el experimento en las mismas condiciones y no solo depende de que el efecto que queremos demostrar exista o no. Hay otros factores que pueden influir en la magnitud de la p: el tamaño de la muestra, el tamaño del efecto, la varianza de la variable medida, la distribución de probabilidad empleada, etc.

Es falso que el valor de p indique la importancia del resultado. Como ya hemos repetido varias veces, el valor de p solo es la probabilidad de que la diferencia observada se deba al azar. Una diferencia estadísticamente significativa no tiene obligatoriamente que ser clínicamente importante. La importancia clínica la establece el investigador y es posible encontrar resultados con una p muy pequeña que no sean importantes desde el punto de vista clínico y viceversa, valores no significativos que sean importantes.

Es falso que el valor de p represente la probabilidad de que la hipótesis nula sea cierta. Esta creencia hace que, a veces, busquemos el valor exacto de p y no nos conformemos con saber solo si es mayor o menor de 0,05. La culpa de este error de concepto la tiene una mala interpretación de la probabilidad condicional. A nosotros nos interesa saber cuál es la probabilidad de que H0 sea cierta una vez que hemos obtenido unos resultados con nuestro ensayo. Expresado matemáticamente, queremos saber P(H0|resultados). Sin embargo, el valor de p lo que nos proporciona es la probabilidad de obtener nuestros resultados bajo el supuesto de que la hipótesis nula es cierta, o sea, P(resultados|H0).

Por tanto, si interpretamos que la probabilidad de que H0 sea cierta a la vista de nuestros resultados (P(H0|resultados)) es igual al valor de p (P(resultados|H0)) estaremos cayendo en una falacia inversa o falacia de la transposición de los condicionales.

En realidad, la probabilidad de que H0 sea cierta no depende solo de los resultados del estudio, sino que también se ve influida por la probabilidad previa que se estimase antes del estudio, que es una medida de la creencia subjetiva que refleja su plausibilidad, generalmente basada en estudios y conocimientos previos. Pensemos que queremos contrastar un efecto que creemos muy poco probable que sea cierto. Valoraremos con precaución un valor de p < 0,05, aunque sea significativo. Por el contrario, si estamos convencidos de que el efecto existe, con poca p nos daremos por satisfechos.

En resumen, para calcular la probabilidad de que el efecto sea real deberemos calibrar el valor de p con el valor de la probabilidad basal de H0, que será asignada por el investigador o por datos previos disponibles. Existen métodos matemáticos para calcular esta probabilidad en función de su probabilidad basal y el valor de p, pero lo más sencillo es recurrir a una herramienta gráfica que es el nomograma de Held, que podéis ver en la figura.

Para utilizar el nomograma de Held solo tenemos que trazar una línea desde la probabilidad previa que consideremos que tiene H0 hasta el valor de p y prolongarla para ver qué valor de probabilidad posterior alcanzamos. Como ejemplo, hemos representado un estudio con un valor de p = 0,03 en el que creemos que la probabilidad de la H0 es del 20% (creemos que hay un 80% de que el efecto sea real). Si prolongamos la línea nos dice que la probabilidad mínima de H0 del 6%: hay un 94% de probabilidad de que el efecto sea real. Por otro lado, pensad en otro estudio con el mismo valor de p pero en el que pensamos que la probabilidad del efecto es más baja, por ejemplo, del 20% (la probabilidad de H0 es del 80%), Para un mismo valor de p, la probabilidad mínima posterior de H0 es del 50%, luego hay un 50% de que el efecto sea real. Vemos, así, como la probabilidad posterior cambia según la probabilidad previa.

Y hasta aquí hemos llegado por hoy. Hemos visto cómo la p solo nos da una idea del papel que el azar ha podido tener en nuestros resultados y que, además, puede depender de otros factores, quizás el más importante el tamaño muestral. La conclusión es que, en muchas ocasiones, el valor de p es un parámetro que permite valorar de forma muy limitada la importancia de los resultados de un estudio. Para hacerlo mejor, es preferible recurrir al uso de los intervalos de confianza, que nos permitirán valorar la importancia clínica y la significación estadística. Pero esa es otra historia…

El detector de tramposos

Cuando pensamos en inventos e inventores, a la mayoría de nosotros nos viene a la cabeza el nombre de Thomas Alva Edison, conocido entre sus amigos como el mago de Menlo Park. Este señor creó más de mil inventos, de algunos de los cuales puede decirse que cambiaron el mundo. Entre ellos podemos nombrar la bombilla incandescente, el fonógrafo, el kinetoscopio, el polígrafo, el telégrafo cuádruplex, etc., etc., etc. Pero quizás su gran mérito no sea el de haber inventado todas estas cosas, sino el de aplicar métodos de producción en cadena y de trabajo en equipo al proceso de investigación, favoreciendo la difusión de sus inventos y la creación del primer laboratorio de investigación industrial.

Pero a pesar de toda su genialidad y excelencia, a Edison se le pasó inventar algo que habría tenido tanta utilidad como la bombilla: un detector de tramposos. La explicación de esta falta es doble: vivió entre los siglos XIX y XX y no se dedicaba a leer artículos sobre medicina. Si hubiese vivido en nuestro tiempo y hubiese tenido que leer literatura médica, no me cabe duda que el mago de Menlo Park se habría dado cuenta de la utilidad de este invento y se habría puesto las pilas (que, por cierto, no las inventó él, sino Alessandro Volta).

Y no es que yo esté hoy especialmente negativo, el problema es que, como ya dijo Altman hace más de 15 años, el material remitido a las revistas médicas es malo desde el punto de vista metodológico en un altísimo porcentaje de los casos. Es triste, pero el sitio más adecuado para guardar muchos de los trabajos que se publican es el cubo de la basura.

En la mayor parte de los casos la causa probablemente sea la ignorancia de los que escribimos. “Somos clínicos”, nos decimos, así que dejamos de lado los aspectos metodológicos, de los cuales tenemos una formación, en general, bastante deficiente. Para arreglarlo, las revistas mandan revisar nuestros trabajos a otros colegas, que andan más o menos como nosotros. “Somos clínicos”, se dicen, así que se comen todos nuestros errores.

Aunque esto es, de por sí, grave, puede tener remedio: estudiar. Pero es un hecho todavía más grave que, en ocasiones, estos errores pueden ser intencionados con el objetivo de inducir al lector a llegar a una determinada conclusión tras la lectura del trabajo. El remedio para este problema es hacer una lectura crítica del trabajo, prestando atención a la validez interna del estudio. En este sentido, quizás el aspecto más difícil de valorar para el clínico sin formación metodológica sea el relacionado con la estadística empleada para analizar los resultados del trabajo. Es aquí, sin ninguna duda, donde mejor se pueden aprovechar de nuestra ignorancia utilizando métodos que proporcionen resultados más vistosos, en lugar de los métodos adecuados.

Como sé que no vais a estar dispuestos a hacer un máster sobre bioestadística, en espera de que alguien invente el detector de tramposos, vamos a dar una serie de pistas para que el personal no experto pueda sospechar la existencia de estas trampas.

La primera puede parecer una obviedad, pero no lo es: ¿se ha utilizado algún método estadístico? Aunque es excepcionalmente raro, puede haber autores que no consideren utilizar ninguno. Recuerdo un congreso al que pude asistir en el que se exponían los valores de una variable a lo largo del estudio que, primero, subían y, después, bajaban, lo que permitía concluir que el resultado no era “muy allá”. Como es lógico y evidente, toda comparación debe hacerse con el adecuado contraste de hipótesis e indicarse su nivel de significación y la prueba estadística utilizada. En caso contrario, las conclusiones carecerán de validez alguna.

Un aspecto clave de cualquier estudio, especialmente en los de intervención, es el cálculo previo del tamaño muestral necesario. El investigador debe definir el efecto clínicamente importante que quiere ser capaz de detectar con su estudio y calcular a continuación qué tamaño muestral le proporcionará al estudio la potencia suficiente para demostrarlo. La muestra de un estudio no es grande o pequeña, sino suficiente o insuficiente. Si la muestra no es suficiente, puede no detectarse un efecto existente por falta de potencia (error de tipo 2). Por otro lado, una muestra mayor de lo necesario puede mostrar como estadísticamente significativo un efecto que no sea relevante desde el punto de vista clínico. Aquí hay dos trampas muy habituales. Primero, el del estudio que no alcanza significación y sus autores afirman que es por falta de potencia (por tamaño muestral insuficiente), pero no hacen ningún esfuerzo por calcular la potencia, que siempre puede hacerse a posteriori. En ese caso, podemos hacerlo nosotros usando programas de estadística o cualquiera de las calculadoras disponibles en internet, como la GRANMO. Segundo, se aumenta el tamaño muestral hasta que la diferencia observada sea significativa, encontrando la ansiada p < 0,05. Este caso es más sencillo: solo tenemos que valorar si el efecto encontrado es relevante desde el punto de vista clínico. Os aconsejo practicar y comparar los tamaños muestrales necesarios de los estudios con los que definen los autores. A lo mejor os lleváis alguna sorpresa.

Una vez seleccionados los participantes, un aspecto fundamental es el de la homogeneidad de los grupos basales. Esto es especialmente importante en el caso de los ensayos clínicos: si queremos estar seguros de que la diferencia de efecto observada entre los dos grupos se debe a la intervención, los dos grupos deben ser iguales en todo, menos en la intervención.

Para esto nos fijaremos en la clásica tabla I de la publicación del ensayo. Aquí tenemos que decir que, si hemos repartido los participantes al azar entre los dos grupos, cualquier diferencia entre ellos se deberá, sí o sí, al azar. No os dejéis engañar por las p, recordad que el tamaño muestral está calculado para la magnitud clínicamente importante de la variable principal, no para las características basales de los dos grupos. Si veis alguna diferencia y os parece clínicamente relevante, habrá que comprobar que los autores han tenido en cuenta su influencia sobre los resultados del estudio y han hecho el ajuste pertinente durante la fase de análisis.

El siguiente punto es el de la aleatorización. Esta es una parte fundamental de cualquier ensayo clínico, por lo que debe estar claramente definido cómo se hizo. Aquí os tengo que decir que el azar es caprichoso y tiene muchos vicios, pero raramente produce grupos de igual tamaño. Pensad un momento si tiráis una moneda 100 veces. Aunque la probabilidad de salir cara en cada lanzamiento sea del 50%, será muy raro que lanzando 100 veces saquéis exactamente 50 caras. Cuánto mayor sea el número de participantes, más sospechoso nos deberá parecer que los dos grupos sean iguales. Pero cuidado, esto solo vale para la aleatorización simple. Existen métodos de aleatorización en los que los grupos sí pueden quedar más equilibrados.

Otro punto caliente es el uso indebido que, a veces, puede hacerse con variables cualitativas. Aunque las variables cualitativas pueden codificarse con números, mucho cuidado con hacer operaciones aritméticas con ellos. Probablemente no tendrán ningún sentido. Otra trampa que podemos encontrarnos tiene que ver con el hecho de categorizar una variable continua. Pasar una variable continua a cualitativa suele llevar aparejada pérdida de información, así que debe tener un significado clínico claro. En caso contrario, podemos sospechar que la razón sea la búsqueda de una p < 0,05, siempre más fácil de conseguir con la variable cualitativa.

Entrando ya en el análisis de los datos, hay que comprobar que los autores han seguido el protocolo del estudio diseñado a priori. Desconfiad siempre de los estudios post hoc que no estaban planificados desde el comienzo. Si buscamos lo suficiente, siempre hallaremos un grupo que se comporta como a nosotros nos interesa. Como suele decirse, si torturas los datos lo suficiente, acabarán por confesar.

Otra conducta inaceptable es finalizar el estudio antes de tiempo por obtenerse buenos resultados. Una vez más, si la duración del seguimiento se ha establecido durante la fase de diseño como la idónea para detectar el efecto, esto debe respetarse. Cualquier violación del protocolo debe estar más que justificada. Lógicamente, es lógico terminar el estudio antes de tiempo por motivos de seguridad de los participantes, pero habrá que tener en cuenta cómo afecta este hecho en la valoración de los resultados.

Antes de realizar el análisis de los resultados, los autores de cualquier trabajo tienen que depurar sus datos, revisando la calidad y la integridad de los valores recogidos. En este sentido, uno de los aspectos a los que hay que prestar atención es al manejo de los datos extremos (los llamados outliers). Estos son los valores que se alejan mucho de los valores centrales de la distribución. En muchas ocasiones pueden deberse a errores en el cálculo, medición o transcripción del valor de la variable, pero también pueden ser valores reales que se deban a la especial idiosincrasia de la variable. El problema es que existe una tendencia a eliminarlos del análisis aún cuando no haya seguridad de que se deban a algún error. Lo correcto es tenerlos en cuenta al hacer el análisis y utilizar, si es necesario, métodos estadísticos robustos que permitan ajustar estas desviaciones.

Finalmente, el aspecto que nos puede costar más a los no muy expertos en estadística es saber si se ha empleado el método estadístico correcto. Un error frecuente es el empleo de pruebas paramétricas sin comprobar previamente si se cumplen los requisitos necesarios. Esto puede hacerse por ignorancia o para obtener la significación estadística, ya que las pruebas paramétricas son menos exigentes en este sentido. Para entendernos, la p será más pequeña que si empleamos la prueba equivalente no paramétrica.

También, con cierta frecuencia, se obvian otros requisitos para poder aplicar determinada prueba de contraste. Como ejemplo, para realizar una prueba de la t de Student o un ANOVA es necesario comprobar la homocedasticidad (una palabra muy fea que quiere decir que las varianzas son iguales), comprobación que se pasa por alto en muchos trabajos. Lo mismo ocurre con los modelos de regresión que, con frecuencia, no se acompañan del preceptivo diagnóstico del modelo que permite justificar su uso.

Otro asunto en el que puede haber trampa es el de las comparaciones múltiples. Por ejemplo, cuando el ANOVA da significativo nos dice que hay al menos dos medias que son diferentes, pero no cuáles, así que nos ponemos a compararlas dos a dos. El problema es que cuando hacemos comparaciones repetidas aumenta la probabilidad de error de tipo I, o sea, la probabilidad de encontrar diferencias significativas solo por azar. Esto puede permitir encontrar, aunque solo sea por casualidad, una p < 0,05, lo que viste mucho el estudio (sobre todo si has gastado mucho tiempo y/o dinero en hacerlo). En estos casos los autores deben emplear alguna de las correcciones disponibles (como la de Bonferroni, una de las más sencillas) para que el alfa global se mantenga en 0,05. El precio a pagar es sencillo: la p tiene que ser mucho más pequeña para ser significativa. Cuando veamos comparaciones múltiples sin corrección solo tendrá dos explicaciones: la ignorancia del que haya hecho el análisis o el intento de encontrar una significación que, probablemente, no soportaría la disminución del valor de p que conllevaría la corrección.

Otra víctima frecuente del mal uso de la estadística es el coeficiente de correlación de Pearson, que se utiliza para casi todo. La correlación, como tal, nos dice si dos variables están relacionadas, pero no nos dice nada sobre la causalidad de una variable para la producción de la otra. Otro mal uso es utilizar el coeficiente de correlación para comparar los resultados obtenidos por dos observadores, cuando probablemente lo que deba utilizarse en este caso es el coeficiente de correlación intraclase (para variables continuas) o el índice kappa (para cualitativas dicotómicas). Por último, también es incorrecto comparar dos métodos de medición (por ejemplo, glucemia capilar y venosa) mediante correlación o regresión lineal. Para estos casos lo correcto sería usar la regresión de Passing y Bablok.

Otra situación en la que una mente paranoica como la mía sospecharía es aquella en la que el método estadístico empleado no lo conocen ni los más listos del lugar. Siempre que haya una forma más conocida (y muchas veces más sencilla) de hacer el análisis, deberemos preguntarnos por qué han usado un método tan raro. En estos casos exigiremos a los autores que justifiquen su elección y que aporten una cita donde podamos revisar el método. En estadística hay que tratar de elegir la técnica correcta para cada ocasión y no aquella que nos proporcione el resultado más apetecible.

En cualquiera de los test de contraste anteriores, los autores suelen emplear un nivel de significación para p < 0,05, lo habitual, pero el contraste puede hacerse con una o con dos colas. Cuando hacemos un ensayo para probar un nuevo fármaco, lo que esperamos es que funcione mejor que el placebo o el fármaco con el que lo estemos comparando. Sin embargo, pueden ocurrir otras dos situaciones que no podemos desdeñar: que funcione igual o, incluso, que funcione peor. Un contraste bilateral (con dos colas) no asume la dirección del efecto, ya que calcula la probabilidad de obtener una diferencia igual o mayor que la observada, en las dos direcciones. Si el investigador está muy seguro de la dirección del efecto puede hacer un contraste unilateral (con una cola), midiendo la probabilidad del resultado en la dirección considerada. El problema es cuando lo hace por otra razón: la p del contraste bilateral es el doble de grande que la del unilateral, por lo que será más fácil conseguir significación estadística con el contraste unilateral. Lo que no es correcto es que este último sea el motivo para hacer un contraste unilateral. Lo correcto, salvo que haya razones bien justificadas, es hacer un contraste bilateral.

Para ir terminando esta entrada tan tramposa, diremos unas palabras sobre el uso de las medidas adecuadas para presentar los resultados. Hay muchas formas de maquillar la verdad sin llegar a mentir y, aunque en el fondo todas dicen lo mismo, la apariencia puede ser muy diferente según cómo lo digamos. El ejemplo más típico es el de usar medidas de riesgo relativas en lugar de medidas absolutas de impacto. Siempre que veamos un ensayo clínico, debemos exigir que nos presenten la reducción absoluta del riesgo y el número necesario a tratar (NNT). La reducción relativa del riesgo es un número mayor que la absoluta, por lo que parecerá que el impacto es mayor. Dado que las medidas absolutas son más fáciles de calcular y se obtienen de los mismos datos que la relativas, deberemos desconfiar si los autores no nos las ofrecen: quizás el efecto no sea tan importante como nos pretenden hacer ver.

Otro ejemplo es el uso de la odds ratio frente a los riesgos relativos (cuando pueden calcularse ambos). La odds ratio tiende a magnificar la asociación entre las variables, así que su uso no justificado también puede hacernos sospechar. Si podéis, calcular el riesgo relativo y comparad las dos medidas.

De igual manera, sospecharemos de los estudios de pruebas diagnósticas que no nos proporcionan los cocientes de probabilidad y se limiten a sensibilidad, especificidad y valores predictivos. Los valores predictivos pueden ser altos si la prevalencia de la enfermedad en la población del estudio es alta, pero no sería aplicables a poblaciones con menos proporción de enfermos. Esto se soslaya con el uso de los cocientes de probabilidad. Siempre deberemos preguntarnos el motivo que puedan tener los autores para obviar el dato parámetro más válido para calibrar la potencia de la prueba diagnóstica.

Y, por último, mucho cuidado con los gráficos: aquí las posibilidades de maquillar los resultados solo están limitadas por la imaginación. Hay que fijarse en las unidades empleadas y tratar de extraer la información del gráfico más allá de lo que pueda parecer que representa a primera vista.

Y aquí dejamos el tema por hoy. Nos ha faltado hablar en detalle sobre otra de las entidades más incomprendidas y manipuladas, que no es otra que nuestra p. A p se le atribuyen muchos significados, generalmente de forma errónea, como la probabilidad de que la hipótesis nula sea cierta, probabilidad que tiene su método específico para poder hacer una estimación. Pero esa es otra historia…