Ciencia sin seso… locura doble

Píldoras sobre medicina basada en pruebas

Guardado por elSin categoría Categora
image_pdfimage_print

El dilema del vigilante

El mundo de la medicina es un mundo de incertidumbre. Nunca podemos estar seguros de nada al 100%, por muy evidente que parezca un diagnóstico, pero no podemos dar palos a diestro y siniestro con técnicas diagnósticas o tratamientos ultramodernos (y nunca inocuos) a la hora de tomar las decisiones que continuamente nos persiguen en nuestra práctica diaria.

Es por esto que siempre estamos inmersos en un mundo de probabilidades, donde las certezas son casi tan infrecuentes como el mal llamado sentido común que, como casi todo el mundo sabe, es el menos común de los sentidos.

Imaginemos que estamos en la consulta y acude un paciente que viene porque le han dado una patada en el culo, bastante fuerte, eso sí. Como buenos médicos que somos le preguntamos aquello de ¿qué le pasa?, ¿desde cuándo? y ¿a qué lo atribuye? Y procedemos a una exploración física completa, descubriendo con horror que tiene un hematoma en la nalga derecha.

Aquí, amigos míos, las posibilidades diagnósticas son numerosas, así que lo primero que vamos a hacer es un diagnóstico diferencial exhaustivo.  Para ello, podremos adoptar cuatro enfoques diferentes. El primero es el enfoque posibilista, que enumerará todos los posibles diagnósticos y tratará de descartar todos ellos de forma simultánea solicitando las pruebas diagnósticas pertinentes. El segundo es el enfoque probabilístico, que ordenará los diagnósticos según su probabilidad relativa y actuará en consecuencia. Parece un hematoma postraumático (el conocido como síndrome de la patada en el culo), pero alguien podría pensar que la patada no ha sido tan fuerte, así que igual el pobre paciente tiene algún trastorno de coagulación o una discrasia sanguínea con una trombopenia secundaria o, incluso, una enfermedad inflamatoria intestinal con manifestaciones extraintestinales atípicas y fragilidad vascular glútea. También podríamos utilizar un enfoque pronóstico y tratar de demostrar o descartar la existencia de los diagnósticos posibles con peor pronóstico, con lo que el diagnóstico de síndrome de la patada en el culo perdería interés y nos iríamos a descartar una leucemia crónica. Por último, podría utilizarse un enfoque pragmático, prestando especial interés en descartar primero aquellos diagnósticos que tienen un tratamiento más eficaz (volveríamos a la patada).

Parece que lo más correcto es utilizar una combinación juiciosa de los enfoques probabilístico, pronóstico y pragmático. En nuestro caso indagaríamos si la intensidad del traumatismo justifica la magnitud del hematoma y, en ese caso, indicaríamos unos paños calientes y nos abstendríamos de realizar más pruebas diagnósticas. Y este ejemplo parece un delirio mío, pero os puedo asegurar que conozco gente que hace la lista completa y tira de prueba diagnóstica ante cualquier sintomatología, sin reparar en gastos ni riesgos. Y, además, alguno que yo me sé pensaría en alguna otra posibilidad más exótica que no acabo de imaginar y aún el paciente tendría que estar agradecido si su diagnóstico no precisa de la realización de una esfinterotomía anal forzada. Y es que, como ya hemos comentado, la lista de espera para obtener un poco de sentido común supera en muchas ocasiones a la lista de espera quirúrgica.

Imaginad ahora otro paciente con un complejo sintomático menos estúpido y absurdo que el del ejemplo previo. Por ejemplo, un niño con síntomas de enfermedad celiaca. Antes de que realicemos ninguna prueba diagnóstica, nuestro paciente ya tiene una probabilidad de padecer la enfermedad. Esta probabilidad vendrá condicionada por la prevalencia de la enfermedad en la población de la que procede y es lo que se denomina probabilidad preprueba. Esta probabilidad se encontrará en algún punto en relación con dos umbrales que os muestro en la figura 1: el umbral de diagnóstico y el umbral terapéutico.

Lo habitual es que la probabilidad preprueba de nuestro paciente no nos permita ni descartar la enfermedad con una seguridad razonable (tendría que ser muy baja, por debajo del umbral diagnóstico) ni confirmarla con la seguridad suficiente como para iniciar el tratamiento (tendría que estar por encima del umbral terapéutico).

Realizaremos entonces la prueba que consideremos indicada, obteniendo una nueva probabilidad de enfermedad según el resultado que nos dé, la llamada probabilidad postprueba. Si esta probabilidad es tan alta como para realizar el diagnóstico e iniciar el tratamiento habremos cruzado el umbral terapéutico. Ya no hará falta realizar pruebas adicionales, ya que tendremos la certeza suficiente para asegurar el diagnóstico y tratar al paciente, siempre dentro de los rangos de incertidumbre de nuestro oficio.

¿Y de qué depende nuestro umbral de tratamiento? Pues hay varios factores implicados. Cuánto mayor riesgo, coste o efectos adversos tenga el tratamiento en cuestión, mayor será el umbral que exigiremos para tratar. Por otra parte, cuanta mayor gravedad comporte omitir el diagnóstico, menor será el umbral terapéutico que aceptaremos.

Pero puede ocurrir que la probabilidad postprueba sea tan baja que nos permita descartar la enfermedad con una seguridad razonable. Habremos cruzado entonces el umbral de diagnóstico, también llamado umbral negativo de prueba. Es evidente que, en esta situación, no estará indicado realizar más pruebas diagnósticas y, mucho menos, iniciar el tratamiento.

Sin embargo, en muchas ocasiones el cambio de probabilidad de preprueba a postprueba nos sigue dejando en tierra de nadie, sin alcanzar ninguno de los dos umbrales, por lo que nos veremos obligados a realizar pruebas adicionales hasta que alcancemos uno de los dos límites.

Y esta es nuestra necesidad de todos los días: conocer la probabilidad postprueba de nuestros pacientes para saber si descartamos o confirmamos el diagnóstico, si dejamos al paciente tranquilo o le fustigamos con nuestros tratamientos. Y es que el planteamiento simplista de que un paciente está enfermo si la prueba diagnóstica es positiva y sano si es negativa es totalmente erróneo, por más que sea la creencia generalizada entre aquellos que indican las pruebas. Tendremos que buscar, pues, algún parámetro que nos indique qué utilidad puede tener una prueba diagnóstica determinada para servir para el fin que necesitamos: saber la probabilidad de que el paciente tenga la enfermedad.

Y esto me recuerda el enorme problema que me consultó el otro día un cuñado. El pobre hombre está muy preocupado con un dilema que le ha surgido. Resulta que va a montar un pequeño comercio y quiere contratar un vigilante para ponerlo en la puerta y que detecte a los que se llevan algo sin pagar. Y el problema es que tiene dos candidatos y no sabe por cuál decidirse. Uno de ellos para a casi todo el mundo, con lo que no se le escapa ningún chorizo. Eso sí, mucha gente honrada se ofende cuando se le pide que abra el bolso antes de salir y lo mismo la próxima vez se va a comprar a otro sitio. El otro es todo lo contrario: no para a casi nadie pero, eso sí, si para a uno, seguro que lleva algo robado. Este ofende a pocos honrados, pero se le escapan demasiados chorizos. Difícil decisión…

¿Y por qué me viene a mí mi cuñado con este cuento? Pues porque sabe que yo me enfrento a diario con un dilema similar cada vez que tengo que elegir una prueba diagnóstica para saber si un paciente está enfermo y le tengo que tratar. Ya hemos dicho que el positivo de una prueba no nos asegura el diagnóstico, al igual que la pinta de chorizo no asegura que el pobre cliente nos haya robado.

Veámoslo con un ejemplo. Cuando queremos saber el valor de una prueba diagnóstica, habitualmente comparamos sus resultados con los de un patrón de referencia o patrón oro (el gold standard de los que saben inglés), que es una prueba que, idealmente, es siempre positiva en los enfermos y negativa en los sanos. Ahora supongamos que yo hago un estudio en mi consulta del hospital con una prueba diagnóstica nueva para detectar una determinada enfermedad y obtengo los resultados de la tabla adjunta (los enfermos son los que tienen la prueba de referencia positiva y los sanos, negativa).

Empecemos por lo fácil. Tenemos 1598 sujetos, 520 de ellos enfermos y 1078 sanos. La prueba nos da 446 positivos, 428 verdaderos (VP) y 18 falsos (FP). Además, nos da 1152 negativos, 1060 verdaderos (VN) y 92 falsos (FN). Lo primero que podemos determinar es la capacidad de la prueba para distinguir entre sanos y enfermos, lo que me da pie para introducir los dos primeros conceptos: sensibilidad (S) y especificidad (E). La S es la probabilidad de que la prueba clasifique correctamente a los enfermos o, dicho de otro modo, la probabilidad de que el enfermo sea positivo. Se calcula dividiendo los VP por el número de enfermos. En nuestro caso es de 0,82 (voy a emplear tantos por uno, pero si a alguien le gustan más los porcentajes ya sabe: a multiplicar por 100). Por otra parte, la E es la probabilidad de que se clasifique correctamente a los sanos o, dicho de otro modo, de que los sanos tengan un resultado negativo. Se calcula dividiendo los VN entre el número de sanos. En nuestro ejemplo, 0,98.

Alguien podrá pensar que ya tenemos medido el valor de la nueva prueba, pero no hemos hecho nada más que empezar. Y esto es así porque S y E nos miden de alguna manera la capacidad de la prueba para discriminar sanos de enfermos, pero nosotros lo que en realidad necesitamos saber es la probabilidad de que un positivo sea enfermo y de que un negativo sea sano y, aunque puedan parecer conceptos similares, en realidad son bien diferentes.

La posibilidad de que un positivo sea enfermo se conoce como valor predictivo positivo (VPP) y se calcula dividiendo el número de enfermos con prueba positiva entre el número total de positivos. En nuestro caso es de 0,96. Esto sí quiere decir que un positivo tiene un 96% de probabilidad de estar enfermo. Por otra parte, la probabilidad de que un negativo sea sano se expresa mediante el valor predictivo negativo (VPN), que es el cociente de sanos con resultado negativo entre el número total de negativos. En nuestro ejemplo vale 0,92 (un negativo tiene una probabilidad del 92% de estar sano). Esto ya se va pareciendo más a lo que dijimos al principio que necesitábamos: la probabilidad postprueba de que el paciente esté realmente enfermo.

Y ahora es cuando las neuronas empiezan a recalentarse. Resulta que S y E son dos características intrínsecas de la prueba diagnóstica. Los resultados serán los mismos siempre que hagamos la prueba en unas condiciones similares, con independencia de a quién se la hagamos. Pero esto no es así con los valores predictivos, que varían según la prevalencia de la enfermedad en la población en la que hacemos la prueba. Esto quiere decir que la probabilidad de que un positivo esté enfermo depende de lo frecuente o rara que sea la enfermedad en su población. Sí, sí, habéis leído bien: la misma prueba positiva expresa diferente riesgo de estar enfermo, y, para los incrédulos, os pongo otro ejemplo. Supongamos que esta misma prueba la hace un coleguilla mío en su consulta del Centro de Salud, donde la población es proporcionalmente más sana (esto es lógico, todavía no han pasado por el hospital). Si veis los resultados de la tabla, y os molestáis en calcular, veréis que obtiene una S de 0,82 y una E de 0,98, lo mismo que me salía a mí en mi consulta. Sin embargo, si calculáis los valores predictivos, veréis que el VPP es de 0,9 y el VPN de 0,95. Y esto es así porque las prevalencias de la enfermedad (enfermos/totales) son distintas en las dos poblaciones: 0,32 en mi consulta de hospital y 0,19 en la suya. O sea, que en los casos de prevalencia más alta un positivo ayuda más para confirmar la enfermedad y un negativo ayuda menos para descartarla. Y al revés, si la enfermedad es muy rara un negativo permitirá descartar la enfermedad con una seguridad razonable, pero un positivo nos ayudará mucho menos a la hora de confirmarla.

Vemos pues que, como pasa casi siempre en medicina, nos movemos en el poco firme terreno de las probabilidades, ya que todas (absolutamente todas) las pruebas diagnósticas son imperfectas y cometen errores a la hora de clasificar sanos y enfermos. Entonces, ¿cuándo merece la pena utilizar una prueba determinada? Pues si pensamos que un determinado sujeto tiene ya una probabilidad de estar enfermo antes de hacerle la prueba (la prevalencia de la enfermedad en su población), solo nos interesará utilizar pruebas que aumenten esa probabilidad lo suficiente como para justificar el inicio del tratamiento pertinente (en otro caso tendríamos que hacer otra prueba hasta alcanzar el nivel umbral de probabilidad que justifique el tratamiento).

Y aquí es donde el tema se empieza a poner antipático. El cociente de probabilidad positivo (CPP) o razón de verosimilitud positiva nos indica cuánto más probable es tener un positivo en un enfermo que en un sano. La proporción de positivos en los enfermos es la S. La proporción de los positivos en sanos son los FP, que serían aquellos sanos que no dan negativo o, lo que es lo mismo, 1-E. Así, el CPP = S / (1-E). En nuestro caso (del hospital) vale 41 (el mismo aunque utilicemos porcentajes para S y E). Esto puede interpretarse como que es 41 veces más probable encontrar un resultado positivo en un enfermo que en un sano.
Puede calcularse también el CPN (el negativo), que expresa cuánto más probable es encontrar un negativo en un enfermo que en un sano. Los enfermos negativos son aquellos que no dan positivo (1-S) y los sanos negativos son los VN (la E de la prueba). Luego el CPN = (1-S)/E. En nuestro ejemplo 0,18.

Un cociente de probabilidad igual a 1 indica que el resultado de la prueba no modifica la probabilidad de estar enfermo. Si es mayor que 1 aumenta esta probabilidad y, si es menor, la disminuye. Este parámetro es el que usamos para determinar la potencia diagnóstica de la prueba. Valores  >10 para CPP (o <0,1 pata CPN) indican que se trata de una prueba muy potente que apoya (o contradice) fuertemente el diagnóstico; de 5-10 (o de 0,1-0,2) indican poca potencia de la prueba para apoyar (o descartar) el diagnóstico; de 2-5 (o de 0,2-0,5) indican que la aportación de la prueba es dudosa; y, por último, de 1-2 (o de 0,5-1) indican que la prueba no tiene utilidad diagnóstica.

El cociente de probabilidad no expresa una probabilidad directa, pero nos sirve para calcular las probabilidades de ser enfermo antes y después de dar positivo en la prueba diagnóstica por medio de la regla de Bayes, que dice que la odds postprueba es igual al producto de la odds preprueba por el cociente de probabilidad. Para transformar la prevalencia en odds preprueba usamos la fórmula odds = p/(1-p). En nuestro caso valdría 0,47. Ahora ya podemos calcular la odds posprueba (OPos) multiplicando la preprueba por el cociente de probabilidad. En nuestro caso, la odds postprueba positiva vale 19,27. Y por último, transformamos la odds postprueba en probabilidad postprueba usando la fórmula p = odds/(odds+1). En nuestro ejemplo vale 0,95, lo que quiere decir que si nuestra prueba es positiva la probabilidad de estar enfermo pasa de 0,32 (la prevalencia o probabilidad preprueba) a 0,95 (probabilidad posprueba).

Si todavía queda alguien leyendo a estas alturas, le diré que no hace falta saberse todo este galimatías de fórmulas. Existen en Internet múltiples páginas con calculadoras para obtener todos estos parámetros a partir de la tabla 2×2 inicial con un esfuerzo miserable. Además, la probabilidad postprueba puede calcularse de forma sencilla utilizando el nomograma de Fagan (ver figura). Este gráfico representa en tres líneas verticales de izquierda a derecha la probabilidad preprueba (se representa invertida), el cociente de probabilidades y la probabilidad postprueba resultante.

Para calcular la probabilidad postprueba tras un resultado po­sitivo, trazamos una línea desde la prevalencia (probabilidad preprueba) hasta el CPP y la prolongamos hasta el eje de la probabilidad postprueba. De modo similar, para calcular la pro­babilidad postprueba tras un resultado negativo, prolongaría­mos la línea que une la prevalencia con el valor del CPN.

De esta manera, con esta herramienta podemos calcular de modo directo la probabilidad postprueba conociendo los co­cientes de probabilidades y la prevalencia. Además, podremos utilizarlo en poblaciones con distintas prevalencias, simple­mente modificando el origen de la línea en el eje de la proba­bilidad preprueba.

Hasta aquí ya hemos definido los parámetros que nos sirven para cuantificar la potencia de una prueba diagnóstica y hemos visto las limitaciones de sensibilidad, especificidad y valores predictivos y como los más útiles de forma general son los cocientes de probabilidades. Pero, os preguntaréis, ¿qué es bueno?, ¿qué sea sensible?, ¿Qué sea específica?, ¿las dos cosas?.

Aquí vamos a volver al dilema del vigilante que se le ha planteado a mi pobre cuñado, que le hemos dejado abandonado, porque todavía no hemos respondido cuál de los dos vigilantes le aconsejamos que contrate, el que para a casi todo el mundo para mirarle el bolso y ofende a mucha gente que no roba nada, o el que no para a casi nadie pero tampoco falla con el que para, aunque se escapen muchos ladrones.

¿Y cuál creéis que es mejor de los dos? La respuesta es muy sencilla: depende. Los que todavía estéis despiertos a estas alturas ya os habréis dado cuenta de que el primer vigilante (el que registra a muchos) es, sin ánimo de ofender, el sensible, mientras que el segundo es el específico. ¿Qué nos interesa más, que el vigilante sea sensible o específico? Pues depende, por ejemplo, de donde tengamos el comercio. Si lo hemos abierto en un barrio de gente bien, no nos interesará mucho el primero, ya que, en realidad, poca gente robará y nos interesa más no ofender a los clientes para que no se vayan. Pero si ponemos la tienda en frente de la Cueva de Alí-Babá sí que nos traerá más cuenta contratarle para que nos detecte el mayor número posible de clientes que se llevan género robado. Pero también puede depender de lo que vendamos en la tienda. Si tenemos un “todo a un euro” (o un “todo a cien” para los nostálgicos) podemos contratar al vigilante específico, aunque se nos escape alguno (total, perderemos poco dinero). Pero si vendemos joyería fina no querremos que se escape ningún ladrón y contrataremos al sensible (preferiremos que alguien inocente se moleste por ser registrado a que se nos escape uno con un diamante de los gordos).

Pues esto mismo ocurre en medicina con la elección de las pruebas diagnósticas: tendremos que decidir en cada caso si nos interesa más una sensible o una específica, porque no siempre las pruebas disponibles tienen un alto valor de estos dos parámetros.

En general, se prefiere una prueba sensible cuando los inconvenientes de obtener falsos positivos (FP) son menores que los de los falsos negativos (FN). Por ejemplo, supongamos que vamos a vacunar a un grupo de enfermos y sabemos que la vacuna es letal en los que tienen determinado error metabólico. Es claro que nos interesará que no se escape ningún enfermo sin diagnosticar (que no haya FN), aunque no pasa nada si a algún sano le etiquetamos de tener el error metabólico (un FP): será preferible no vacunar a un sano por pensar que tiene la metabolopatía (aunque no la tenga) que cargarnos a uno con la vacuna por pensar que no la tenía. Otro ejemplo menos dramático: en medio de una epidemia nos interesará una prueba muy sensible para poder aislar al mayor número posible de enfermos. El problema aquí es el de los desgraciados sanos positivos (FP) que meteríamos con los infectados, a los cuáles haríamos un flaco favor con la maniobra. Claro que bien podríamos hacer, a todos los positivos de la primera prueba, una segunda de confirmación que sea muy específica para evitar este calvario a los FP.

Por otra parte, se prefiere una prueba específica cuando es mejor tener FN que FP, como cuando queremos estar seguros de que un enfermo realmente lo está. Imaginemos que el resultado positivo de una prueba conlleva un tratamiento consistente en una operación quirúrgica: nos convendrá bastante estar seguros de que no vamos a operar a ningún sano.

Otro ejemplo es el de las enfermedades cuyo diagnóstico puede ser muy traumático para el paciente y que encima son prácticamente incurables o no tienen tratamiento. Aquí primaremos la especificidad para no darle un disgusto innecesario a ningún sano. Por el contrario, si la enfermedad es muy grave pero tiene tratamiento, probablemente prefiramos una prueba sensible.

Hasta aquí hemos hablado de pruebas con resultado dicotómico: positivo o negativo. Pero, ¿qué pasa cuando el resultado es cuantitativo? Imaginemos que medimos la glucemia en ayunas. Debemos decidir hasta qué valor de glucemia consideramos normal y por encima de cuál nos parecerá patológico. Y esta es una decisión crucial, porque S y E dependerán del punto de corte que elijamos.

Para ayudarnos a elegir disponemos de la curva de características operativas para el receptor, mundialmente conocida como curva ROC (receiver operating characteristic). Representamos en ordenadas (eje y) la S y en abscisas el complementario de la E (1-E) y trazamos una curva en la que cada punto de corte representa la probabilidad de que la prueba clasifique correctamente a una pareja sano-enfermo tomada al azar. La diagonal del gráfico representaría la “curva” si la prueba no tuviese capacidad ninguna de discriminar sanos de enfermos.

Como veis en la figura, la curva suele tener un segmento de gran pendiente donde aumenta rápidamente la S sin que apenas varíe la E: si nos desplazamos hacia arriba podemos aumentar la S sin que prácticamente nos aumenten los FP. Pero llega un momento en que llegamos a la parte plana. Si seguimos desplazándonos hacia la derecha llegará un punto a partir del cual la S ya no aumentará más, pero comenzarán a aumentar los FP. Si nos interesa una prueba sensible, nos quedaremos en la primera parte de la curva. Si queremos especificidad tendremos que irnos más hacia la derecha. Y, por último, si no tenemos predilección por ninguna de las dos (nos preocupa igual obtener FP que FN), el mejor punto de corte será el más próximo al ángulo superior izquierdo. Para esto, algunos utilizan el denominado índice de Youden, que es el que optimiza al máximo los dos parámetros y que se calcula sumando S y E y restando 1. Cuanto más alto, menos pacientes mal clasificados por la prueba diagnóstica.

Un parámetro de interés es el área bajo la curva (ABC), que nos representa la probabilidad de que la prueba diagnóstica clasifique correctamente al paciente al que se le practique (figura 4). Una prueba ideal con S y E del 100% tiene un área bajo la curva de 1: siempre acierta. En clínica, una prueba cuya curva ROC tenga un ABC > 0,9 se considera muy exacta, entre 0,7-0,9 de exactitud moderada y entre 0,5-0,7 de exactitud baja. En la diagonal el ABC es igual a 0,5 e indica que da igual hacer la prueba que tirar una moneda al aire para decidir si el paciente está enfermo o no. Valores por debajo de 0,5 indican que la prueba es incluso peor que el azar, ya que clasificará sistemáticamente a enfermos como sanos y viceversa.

Curiosas las curvas ROC, ¿verdad?. Pues su utilidad no se limita a la valoración de la bondad de las pruebas diagnósticas con resultado cuantitativo. Las curvas ROC sirven también para determinar la bondad del ajuste de un modelo de regresión logística para predecir resultados dicotómicos, pero esa es otra historia…

Afinando

Ya conocemos qué son los términos MeSH de Pubmed y cómo se puede realizar una búsqueda avanzada con ellos. Vimos que el método de búsqueda seleccionando los descriptores puede ser un poco laborioso, pero nos permitía seleccionar muy bien, no solo el descriptor, sino también alguno de sus subencabezados, incluir o no los términos que dependían de él en la jerarquía, etc.

Hoy vamos a ver otra forma de búsqueda avanzada algo más rápida a la hora de construir la cadena de búsqueda, y que nos permite, además, combinar varias búsquedas diferentes. Vamos a utilizar el formulario de búsqueda avanzada de Pubmed.

Para empezar, hacemos click en el enlace “Advanced” que hay debajo de la caja de búsqueda en la página de inicio de Pubmed. Esto nos lleva a la página de búsqueda avanzada, que veis en la figura 1. Echemos un vistazo.

En primer lugar hay una caja con el texto “Use the builder below to create your search” y sobre la que, inicialmente, no podemos escribir. Aquí se va ir formando la cadena de búsqueda que Pubmed va a emplear cuando pulsemos el Botón “Search”. Esta cadena podrá editarse pulsando sobre el enlace que hay debajo a la izquierda de la caja, “Edit”, lo que nos permitirá quitar o poner texto a la cadena de búsqueda que se haya elaborado hasta entonces, con texto libre o controlado, para volver a dar al botón “Search” y repetir la búsqueda con la nueva cadena. También hay un enlace debajo y a la derecha de la caja que dice “Clear”, con el que podremos borrar su contenido.

Debajo de esta caja de texto tenemos el constructor de la cadena de búsqueda (“Builder”), con varias filas de campos. En cada fila introduciremos un descriptor diferente, así que podremos añadir o quitar las filas que necesitemos con los botones “+” y “-“ que hay a la derecha de cada fila.

Dentro de cada fila hay varias cajas. La primera, que no está en la primera fila, es un desplegable con el operador booleano de búsqueda. Por defecto marca el AND, pero podemos cambiarlo si queremos. El siguiente es un desplegable en el que podemos seleccionar dónde queremos que se busque el descriptor. Por defecto marca “All Fields”, todos los campos, pero podemos seleccionar solo el título, solo el autor, solo último autor y muchas otras posibilidades. En el centro está la caja de texto donde introduciremos el descriptor. A su derecha, los botones “+” y “-“ que ya hemos nombrado. Y, por último, en el extremo derecho hay un enlace que dice “Show index list”. Este es una ayuda de Pubmed, ya que si pulsamos sobre él, nos dará una lista de los posibles descriptores que se ajustan a lo que hayamos escrito en la caja de texto.

Según vamos introduciendo términos en las cajas, creando las filas que necesitemos y seleccionando los operadores booleanos de cada fila, se irá formando la cadena de búsqueda, Cuando hayamos terminado podremos hacer dos cosas.

La más habitual será pulsar el botón “Search” y hacer la búsqueda. Pero hay otra posibilidad, que es clicar en el enlace “Add to history”, con lo que la búsqueda se almacena en la parte inferior de la pantalla, donde dice “History”. Esto será muy útil, ya que las búsquedas que se hayan guardado se pueden introducir en bloque en el campo de los descriptores al hacer una nueva búsqueda y combinarse con otras búsquedas o con series de descriptores. ¿Os parece un poco lioso? Vamos a aclararnos con un ejemplo.

Supongamos que yo trato la otitis media de mis lactantes con amoxicilina, pero quiero saber si otros fármacos, en concreto el cefaclor y la cefuroxima, mejoran el pronóstico. Aquí tenemos dos preguntas clínicas estructuradas. La primera diría “¿El tratamiento con cefaclor mejora el pronóstico de la otitis media en lactantes?”. La segunda diría lo mismo pero cambiando cefaclor por cefuroxima. Así que habría dos búsquedas diferentes, una con los términos infants, otitis media, amoxicillin, cefaclor y prognosis, y otra con los términos infants, otitis media, amoxicillin, cefuroxime y prognosis.

Lo que vamos a hacer es planear tres búsquedas. Una primera sobre artículos que hablen sobre el pronóstico de la otitis media en lactantes; una segunda sobre cefaclor; y una tercera sobre cefuroxima. Finalmente, combinaremos la primera con la segunda y la primera con la tercera en dos búsquedas diferentes, utilizando el booleano AND.

Empecemos. Escribimos otitis en la caja de texto de la primera fila de búsqueda y pulsamos el enlace “Show index”. Aparece un desplegable enorme con la lista de los descriptores relacionados (cuando veamos una palabra seguida de la barra inclinada y de otra palabra querrá decir que es un subencabezado del descriptor). Si buscamos, hay una posibilidad que dice “otitis/media infants” que se ajusta bien a lo que nos interesa, así que la seleccionamos. Ya podemos cerrar la lista de descriptores, pulsando el enlace “Hide index list”. Ahora en la segunda caja escribimos prognosis (debemos seguir el mismo método: escribir parte en la caja y seleccionar el término de la lista de índices). Nos aparece una tercera fila de cajas (si no es así, pulsamos el botón “+”). En esta tercera fila escribimos amoxicillin. Por último, vamos a excluir de la búsqueda los artículos que traten sobre la combinación de amoxicilina y ácido clavulánico. Escribimos clavulanic y pulsamos “Show index list”, con lo que nos enseña el descriptor “clavulanic acid”, que seleccionamos. Como lo que queremos es excluir estos trabajos de la búsqueda, cambiamos el operador booleano de esa fila a NOT.

En la figura 2 de pantalla podéis ver lo que hemos hecho hasta ahora. Veis que los términos están entre comillas. Eso es porque hemos elegido los MeSH de la lista de índices. Si escribimos directamente el texto en la caja aparecen sin comillas, lo que equivale a decir que la búsqueda se hace con texto libre (se pierde la precisión del lenguaje controlado de los términos MeSH). Fijaos además que en la primera caja de texto del formulario se nos ha escrito la cadena de búsqueda que hemos construido hasta ahora, que dice (((“otitis/media infants”) AND prognosis) AND amoxicillin) NOT “clavulanic acid”. Si quisiéramos, ya hemos dicho que podríamos modificarla, pero la vamos a dejar como está.

Ahora podríamos pulsar “Search” y hacer la búsqueda o directamente pulsar sobre el enlace “Add to history”. Para que veáis cómo se van recortando el número de artículos encontrados, pulsad en “Search”. Yo obtengo un listado con 98 resultados (el número puede depender del momento en el que hacéis la búsqueda). Muy bien, pulsamos en el enlace “Advanced” (en la parte superior de la pantalla) para volver al formulario de búsqueda avanzada.

En la parte inferior de la pantalla podemos ver guardada la primera búsqueda, numerada como #1 (podéis verlo en la figura 3).

Lo que queda ya es más sencillo. Escribimos cefaclor en la caja de texto y damos al enlace “Add to history”. Repetimos el proceso con el término cefuroxime. El resultados lo tenéis en la figura 4. Veis cómo Pubmed nos ha guardado las tres búsquedas en el historial de búsquedas. Si ahora queremos combinarlas, no tenemos más que hacer click sobre el número de cada una (se abrirá una ventana para que cliquemos en el booleano que nos interese, en este caso todos AND).

Primero hacemos click en #1 y #2, seleccionando AND. Veis cómo queda en la quinta captura de pantalla. Fijaos que la cadena de búsqueda se ha complicado un poco: (((((otitis/media infants) AND prognosis) AND amoxicillin) NOT clavulanic acid)) AND cefaclor. Como curiosidad os diré que, si escribimos directamente esta cadena en la caja de búsqueda simple, el resultado sería el mismo. Es el método que emplean los que dominan totalmente la jerga de este buscador. Pero nosotros tenemos que hacerlo con la ayuda del formulario de búsqueda avanzada. Pulsamos “Search” y obtenemos siete resultados que serán (eso esperamos) trabajos que comparen la amoxicilina con el cefaclor para el tratamiento de la otitis media en lactantes.

Volvemos a hacer click sobre el enlace “Advanced” y, en el formulario vemos que hay una búsqueda más, la #4, que es la combinación de la #1 y la #2. Ya podéis haceros una idea de lo que puede complicarse esto de combinar unas con otras, sumando o restando según el operador booleano que elijamos. Bueno, pues hacemos click sobre la #1 y la #3 y pulsamos “Search”, encontrando cinco trabajos que deben tratar sobre el problema que estamos buscando.

Vamos a ir terminando por hoy. Creo que queda demostrado que el uso de términos MeSH y de búsqueda avanzada rinde resultados más específicos que la búsqueda simple. Lo habitual con la búsqueda simple con lenguaje natural es obtener listados interminables de trabajos, la mayoría sin interés para nuestra pregunta clínica. Pero tenemos que tener en cuenta una cosa. Ya dijimos que hay una serie de personas que se dedican a adjudicar los descriptores MeSH a los artículos que entran en la base de datos de Medline. Como es lógico, desde que el artículo entra en la base de datos hasta que se le indexa (se le adjudican los MeSH) pasa algo de tiempo y durante ese tiempo no podremos encontrarlo usando términos MeSH. Por este motivo, puede no ser mala idea hacer una búsqueda con lenguaje natural después de la avanzada y mirar si en los primeros de la lista hay algún artículo que todavía no esté indexado y que nos pueda interesar.

Por último, comentar que las búsquedas pueden conservarse descargándolas a nuestro disco (pulsando el enlace “download history”) o, mucho mejor, creando una cuenta en Pubmed haciendo click sobre el enlace de la parte superior derecha de la pantalla que dice “Sign in to NCBI”. Esto es gratis y nos permite guardar el trabajo de búsqueda de una vez para otra, lo cual puede ser muy útil para usar otras herramientas como las Clinical Queries o los filtros del buscador. Pero esa es otra historia…

Otra de monedas

Pocas cosas son inmutables en este mundo. Todo cambia y todo es relativo. Incluso la probabilidad de un suceso puede ser algo cambiante. Me explico.

Habitualmente vemos el mundo de la probabilidad desde un punto de vista frecuentista. Si tenemos un dado con seis caras asumimos que cada cara tiene una probabilidad de aparecer de una entre seis cada vez que lancemos el dado (suponiendo que el dado es legal y todas las caras tienen la misma probabilidad de salir).

Si tenemos dudas sobre si el dado es legal, lo que hacemos es tirar el dado un número enorme de veces hasta que somos capaces de calcular cuántas veces es predecible que aparezca cada cara, calculando así su probabilidad. Pero, en ambos casos, una vez que obtenemos el dato, ya no nos movemos de ahí. Pase lo que pase, seguiremos afirmando que la probabilidad de sacar un cinco en una tirada es un sexto.

Pero a veces la probabilidad puede cambiar y volverse diferente de la que preestablecimos en un comienzo. Una probabilidad inicial puede cambiar si inyectamos información nueva en el sistema y puede depender de eventos que vayan sucediendo a lo largo del tiempo. Esto da origen al punto de vista estadístico bayesiano, basado en gran parte en la regla de Bayes, en el que la probabilidad de un evento puede ir actualizándose a lo largo del tiempo. Pongamos un ejemplo.

Supongamos, como no, que tenemos tres monedas. Pero son tres monedas muy particulares, ya que solo una de ellas es legal (cara y cruz, CZ). De las otras dos, una tiene dos caras (CC) y la otra, dos cruces (ZZ). Ahora metemos las tres monedas en una bolsa y sacamos una de ellas sin mirar. La pregunta es: ¿cuál es la probabilidad de haber sacado la moneda con dos caras?.

¡Qué sencillo!, pensaréis la mayoría. Es el típico caso de eventos favorables dividido por eventos posibles. Como hay un evento favorable (CC) y tres posibles (CC, ZZ y CZ), la probabilidad es de un tercio. Tenemos una probabilidad del 33% de haber sacado la moneda con dos caras.

Pero, ¿qué pasa si os digo que lanzo la moneda al aire y me sale cara?. ¿Sigo teniendo la misma probabilidad de un tercio de tener la moneda con dos caras en la mano?. La respuesta, evidentemente, es no. ¿Y cuál es ahora la probabilidad de tener en la mano la moneda con dos caras?. Para calcularlo no nos valen los eventos favorables y los posibles, sino que tenemos que recurrir a la regla de Bayes. Vamos a razonarla.

La probabilidad de que se produzcan dos sucesos independientes A y B es igual a la probabilidad de A por la probabilidad de B. En el caso de que los dos sucesos sean dependientes, la probabilidad de A y B sería igual a la probabilidad de A por la probabilidad de B una vez que se ha producido A:

P(A y B) = P(A) x P(B|A)

Llevándolo al ejemplo de nuestras monedas, la probabilidad de que salga cara y de que tengamos la moneda de dos caras podemos expresarla como

P(C y CC) = P(C) x P(CC|C) (probabilidad de obtener cara por probabilidad de tener la moneda CC una vez que sale cara).

Pero también lo podemos expresar al revés:

P(C y CC) = P(CC) x P(C|CC) (probabilidad de tener la moneda CC por la probabilidad de sacar cara si tenemos la moneda CC).

Así que podemos igualar las dos expresiones y obtener nuestra buscada regla de Bayes:

P(C) x P(CC|C) = P(CC) x P(C|CC)

P(CC|C) = [P(CC) x P(C|CC)] / P(C)

Vamos a calcular nuestra probabilidad de tener la moneda CC si hemos sacado cara. Sabemos que P(CC) = 1/3. P(C|CC) = 1: si tenemos la moneda con dos caras la posibilidad de que salga cara es del 100%. ¿Cuál es la P(C)?.

La probabilidad de sacar cara será igual a la probabilidad de haber sacado de la bolsa la moneda ZZ por la posibilidad de tener cara con ZZ más la probabilidad de haber sacado CC por la probabilidad de cara con CC más la probabilidad de haber sacado la moneda legal por la probabilidad de cara con esta moneda:

P(C) = (1/3 x 0) + (1/3 x 1/2) + (1/3 x 1) = 1/2

Luego, P(CC|C) = [1 x 1/3] / 1/2 = 2/3 = 0,66

Esto quiere decir que si hemos tirado la moneda y ha salido cara, la probabilidad de que tengamos la moneda con dos caras sube del 33% al 66% (y la de tener la moneda con dos cruces baja del 33% al 0).

¿Veis cómo se ha actualizado la probabilidad?. ¿Qué pasaría si volvemos a lanzar la moneda y vuelve a salir cara?. ¿Cuál sería entonces la probabilidad de tener la moneda con dos caras?. Vamos a calcularlo siguiendo el mismo razonamiento:

P(CC|C) = [P(CC) x P(C|CC)] / P(C)

En este caso, P(CC) ya no vale 1/3, sino 2/3. P(C|CC) sigue valiendo 1. Por último P(C) también se ha modificado: ya hemos descartado la posibilidad de haber sacado la moneda con dos cruces, así que la probabilidad de sacar cara en el segundo lanzamiento es la probabilidad de tener CC por la probabilidad de cara con CC más la probabilidad de tener la moneda legal por la probabilidad de cara con esta moneda:

P(C) = (2/3 x 1) + (1/3 x 1/2) = 5/6

Así que P(CC|C) = (2/3 x 1) / (5/6) = 4/5 = 0,8

Si en el segundo lanzamiento volvemos a sacar cara, la probabilidad de que estemos lanzando la moneda con dos caras sube del 66% al 80%. Lógicamente, si seguimos repitiendo el experimento, cuántas más caras saquemos, más seguros estaremos de que tenemos la moneda con dos caras, aunque nunca tendremos una certeza total. Por supuesto, el experimento termina en el momento en que sacamos cruz, en el que la probabilidad de la moneda CC bajaría automáticamente a cero (y la de la moneda legal a 100%).

Como veis, la probabilidad no es tan inmutable como parece.

Y aquí dejamos de jugar con monedas por hoy. Solo deciros que, aunque sea menos conocido que el enfoque frecuentista, esto de la estadística bayesiana da para mucho. Existen manuales, programas informáticos especiales y métodos de análisis de resultados que incorporan la información que se deriva del estudio. Pero esa es otra historia…

El cocinero y su pastel

Saber cocinar es una ventaja. ¡Qué bien queda uno cuando tiene invitados y sabe cocinar como es debido!. Te pasas dos o tres horas comprando los ingredientes, te dejas un dineral y te tiras otras dos o tres horas en la cocina… y, al final, resulta que el plato estupendo que estabas preparando te queda hecho una ruina.

Y esto le pasa hasta a los mejores cocineros. Nunca podemos estar seguros de que el plato nos vaya a quedar bien, aunque lo hayamos preparado antes muchas veces. Así que entenderéis el problema que tiene mi primo.

Resulta que va a dar una fiesta y a él le ha tocado hacer el postre. Sabe hacer un pastel bastante rico, pero solo le sale realmente bueno la mitad de las veces que lo intenta. Así que está muy preocupado por hacer el ridículo en la fiesta, como es bien comprensible. Claro que mi primo es muy listo y ha pensado que si hace más de un pastel, alguno le tiene que quedar bueno. Pero, ¿cuántos tiene que hacer para tener, por lo menos, uno bueno?.

El problema de esta pregunta es que no tiene una respuesta exacta. Cuantos más pasteles haga, más probable que alguno salga bueno. Pero claro, puede hacer doscientos y tener la mala suerte de que todos sean malos. Pero no desesperéis: aunque no podemos dar una cifra con seguridad absoluta, si podemos medir la probabilidad de quedar bien con un número determinado de pasteles. Veámoslo.

Vamos a imaginar la distribución de probabilidad, que no es más que el conjunto de situaciones que incluyen todas las situaciones que pueden ocurrir. Por ejemplo, si mi primo hace un pastel, éste puede salir bueno (B) o malo (M), ambos con una probabilidad de 0,5. Podéis verlo representado en el gráfico A. Tendrá un 50% de probabilidades de éxito.

Si hace dos pasteles puede ocurrir que le salgan bien uno, dos o ninguno. Las combinaciones posibles serán: BB, BM, MB, MM. La probabilidad de tener uno bueno es de 0,5 y la de tener dos 0,25, con lo que la probabilidad de tener al menos uno bueno es de 0,75 o 75% (3/4). Lo representamos en el gráfico B Vemos que las opciones mejoran, pero todavía queda mucho margen para el fracaso.binomial

Si hace tres pasteles las opciones son las siguientes: BBB, BBM, BMB, BMM, MBB, MBM, MMB y MMM. Esto mejora, ya tenemos un 87,5% (1/8) de que al menos un pastel salga bien. Lo representamos en el gráfico C.

¿Y si hace cuatro, o cinco, o…?. El asunto se convierte en un auténtico coñazo. Cada vez es más difícil imaginar las combinaciones posibles. ¿Y qué hacemos?. Pues pensar un poco.

Si nos fijamos en los gráficos, las barras representan los elementos discretos de probabilidad de cada uno de los eventos posibles. Según aumenta el número de posibilidades y aumenta el número de barras verticales, la distribución de las barras comienza a adoptar una forma acampanada, ajustándose a una distribución de probabilidad conocida, la distribución binomial.

Las personas que entienden de estas cosas, llaman experimentos de Bernouilli a aquellos que tienen solo dos soluciones posibles (son dicotómicos), como tirar una moneda (cara o cruz) o nuestro pastel (bueno o malo). Pues bien, la distribución binomial mide el número de éxitos (k) de una serie de experimentos de Bernouilli (n) con una determinada probabilidad de ocurrencia de éxito de cada suceso (p).

En nuestro caso la probabilidad es p=0,5 y podemos calcular la probabilidad de tener éxito repitiendo el experimento (cocinando pasteles) según la siguiente fórmula:

\fn_jvn P(k\ aciertos\ en\ n\ intentos)= \binom{n}{k} p^{k} (1-p)^{n-k}

Si sustituimos p por 0,5 (la probabilidad de que el pastel salga bueno), podemos ir jugando con los valores de n para obtener, al menos, un pastel bueno (k≥1).

Si hacemos cuatro pasteles, la probabilidad de tener al menos uno bueno es de 93,75% y si hacemos cinco esta probabilidad sube a 96,87%, un valor de probabilidad razonable para lo que estamos buscando. Yo creo que haciendo cinco pasteles es muy difícil que a mi primo se le arruine su fiesta.

También podríamos despejar el valor de la probabilidad y calcularlo al revés: dado un valor de P(k de n) obtener el número de intentos necesarios. Otra cosa que se puede hacer es calcular todas estas cosas sin utilizar la fórmula, sino usar cualquiera de las calculadoras de probabilidad disponibles en Internet.

Y aquí se acaba esta entrada tan golosa. Existen, como podéis imaginar, más tipos de distribuciones de probabilidad, tanto discretas como esta distribución binomial como continúas como la distribución normal, la más famosa de todas. Pero esa es otra historia…