Ciencia sin seso… locura doble

Píldoras sobre medicina basada en pruebas

Entradas etiquetadasEstudios analíticos

King Kong contra Godzilla

¡Vaya lío que forman estos dos elementos cuando los dejan sueltos y se juntan! En esta historia, casi tan vieja como yo (por favor, no corráis a mirar en qué año se hizo la película) el pobre King Kong, que debió viajar más que Tarzán, sale de su Isla Calavera para defender un pueblo de un malvado pulpo gigante y se bebe una pócima que lo deja profundamente dormido. Esto lo aprovechan unos señores japoneses para llevarle a su país. Yo, que he estado en Japón, puedo imaginar el efecto que le hizo al pobre mono cuando se despertó, así que no tuvo más remedio que escaparse, con la mala fortuna de encontrarse a Godzilla, que también se había escapado de un iceberg donde previamente le habían congelado. Y ahí que se lían, piedras para acá, rayos atómicos para allá, hasta que la cosa se descontrola y finalmente King Kong se va a atacar Tokio, no me acuerdo exactamente por qué motivo. Os juro que no me he tomado ningún alucinógeno, la película es así y no voy a revelar más por no estropearos el final en el increíble caso de que queráis verla después de lo que os cuento. Lo que no sé es que se habrían tomado los guionistas antes de planear esta historia.

A estas alturas estaréis pensando de qué puede ir la entrada de hoy que esté relacionada con esta historia. Pues la verdad es que no tiene nada que ver con lo que vamos a hablar, pero no se me ocurría mejor forma de empezar. Bueno, en realidad quizás sí, porque hoy vamos a hablar de una familia de monstruos dentro de los estudios epidemiológicos: los estudios ecológicos. Es curioso que cuando uno lee algo sobre los estudios ecológicos siempre empieza diciendo que son sencillos. Pues a mí no me lo parecen. La verdad es que tienen mucha miga y vamos a intentar contarlos de forma sencilla. Agradezco de paso a mi amigo Eduardo (a quien dedico esta entrada) el esfuerzo que hizo por describirlos de forma inteligible. Gracias a él pude entenderlos. Bueno… un poco.

Los estudios ecológicos son estudios observacionales que tienen la peculiaridad de que la población de estudio no son sujetos individuales, sino sujetos agrupados (en conglomerados), por lo que el nivel de inferencia de sus estimaciones es también agregado. Suelen ser baratos y rápidos de realizar (supongo que de ahí vendrá lo de su sencillez), ya que suelen utilizar datos de fuentes secundarias ya disponibles, y son de gran utilidad cuando no es posible medir la exposición a nivel individual o cuando la medida de efecto solo se puede medir a nivel poblacional (como los resultados de una campaña vacunal, por ejemplo).

El problema viene cuando queremos hacer inferencia a nivel individual a partir de sus resultados, ya que están sujetos a una serie de sesgos que luego comentaremos. Además, como suelen ser con mayor frecuencia estudios descriptivos de temporalidad histórica, puede ser difícil determinar la gradación temporal entre la exposición y el efecto estudiado.

Vamos a ver las características específicas en relación a tres aspectos de su metodología: tipos de variables y análisis, tipos de estudios y sesgos.

Las variables ecológicas se clasifican en variables agregadas y ambientales (también llamadas globales). Las agregadas muestran un resumen de observaciones individuales. Suelen ser medias o proporciones, como la edad media en la que se ve la primera película de King Kong o la tasa de frikis por cada 1000 asistentes a las salas de cine, por citar dos ejemplos absurdos.

Por su parte, las medidas ambientales son características de un lugar determinado. Estas pueden tener un paralelismo a nivel individual (por ejemplo, los niveles de polución ambiental, relacionados con la mierda que traga cada uno) o ser atributos de grupos sin equivalencia a nivel individual (como la calidad del agua, por decir alguna).

En cuanto al análisis, puede hacerse a nivel agregado, usando datos de grupos de participantes, o a nivel individual, pero mejor sin mezclar los dos tipos. Es más, si se recogen datos de los dos tipos lo más conveniente será transformarlos en un solo nivel, siendo lo más sencillo agregar los datos individuales, aunque también se puede hacer al revés e, incluso, hacer un análisis en los dos niveles con técnicas estadísticas de multinivel jerarquizado, solo al alcance de unas pocas mentes privilegiadas.

Como es lógico, el nivel de inferencia que queramos aplicar dependerá de cuál sea nuestro objetivo. Si queremos estudiar los efectos de un factor de riesgo a nivel individual, la inferencia será individual. Un ejemplo sería estudiar relacionar el número de horas que se ve la televisión con la incidencia de cáncer de cerebro. Por otra parte, y siguiendo un ejemplo muy pediátrico, si queremos conocer la efectividad de una vacuna las inferencias se harán de forma agregada a partir de los datos de cobertura vacunal en la población. Y para acabar de rizar el rizo, podemos medir un factor de exposición de las dos formas, individual y agrupada. Por ejemplo, densidad de restaurantes mexicanos en una población y frecuencia de uso de antiácidos. En este caso haríamos una inferencia contextual.

En cuanto al tipo de estudios ecológicos, los podemos clasificar según el método de exposición y el método de agrupación.

Según el método de exposición la cosa es relativamente sencilla y podemos encontrarnos dos tipos de estudios. Si no medimos la variable de exposición, o lo hacemos parcialmente, hablamos de estudios exploratorios. En el caso contrario, nos encontraremos ante un estudio analítico.

Según el método de agrupación, podemos considerar tres tipos: múltiples (cuando se seleccionan varias zonas), de tendencia temporal (existe medición a lo largo del tiempo) y mixtos (combinación de los dos).

La complejidad empieza cuando se combinan las dos dimensiones (exposición y agrupación), ya que entonces nos podemos encontrar ante una serie de diseños más complejos. Así, los estudios de grupos múltiples pueden ser exploratorios (no se mide el factor de exposición, pero sí el efecto) o analíticos (el más frecuente, aquí medimos ambas cosas). Los estudios de tendencia temporal, para no ser menos, pueden también ser exploratorios y analíticos, de forma similar a los anteriores, pero a lo largo del tiempo. Por último, habrá estudios mixtos que comparen las tendencias temporales de varias áreas geográficas. Sencillo, ¿verdad?

Pues esto no es nada comparado con la complejidad de las técnicas estadísticas empleadas en estos estudios. Hasta hace poco los análisis eran muy sencillos y se basaban en medidas de asociación o de correlación lineal, pero en los últimos tiempos hemos asistido al desarrollo de numerosas técnicas basadas en modelos de regresión y cosas más exóticas como los modelos multiplicativos log-lineales o la regresión de Poisson. El mérito de todos estos estudios es que, a partir de las medidas agrupadas, nos permiten conocer cuántos sujetos expuestos o no expuestos presentan el efecto, permitiendo así el cálculo de tasas, fracciones atribuibles, etc. No temáis, no vamos a entrar en detalle, pero hay bibliografía para aquellos que quieran calentarse la cabeza.

Para terminar con los aspectos metodológicos de los estudios ecológicos, vamos a enumerar algunos de sus sesgos más característicos, favorecidos por el hecho de utilizar unidades de análisis agregadas.

El más famoso de todos es el sesgo ecológico, conocido también como falacia ecológica. Este se produce cuando la medida agrupada no mide el efecto biológico a nivel individual, de tal forma que la inferencia individual realizada es errónea. Este sesgo se hizo famoso con el estudio del New England que concluía que había una relación entre el consumo de chocolate y los premios Nobel pero el problema es que, fuera de la gracia de este ejemplo, la falacia ecológica es la principal limitación de este tipo de estudios.

El otro sesgo que tiene algunas peculiaridades en este tipo de estudios es el sesgo de confusión. En los estudios que tratan con unidades individuales se produce confusión cuando la variable de exposición se relaciona con el efecto y con la exposición, sin formar parte de la relación causal entre ambos. Este ménage à trois es un poco más complejo en los estudios ecológicos. El factor de riesgo puede comportarse de forma similar a nivel ecológico, pero no a nivel individual y al revés, es posible que factores de confusión a nivel individual no produzcan confusión a nivel de agregado. En cualquier caso, al igual que en el resto de los estudios, hay que tratar de controlar los factores de confusión, para lo cual hay dos abordajes fundamentales.

El primero, meter las posibles variables de confusión en el modelo matemático como covariables y realizar un análisis multivariante, con lo que nos va a ser más complicado estudiar el efecto. El segundo, ajustar o estandarizar las tasas de producción del efecto por las variables de confusión y realizar el modelo de regresión con las tasas ajustadas. Para poder hacer esto es imprescindible que todas las variables introducidas en el modelo se ajusten también a la misma variable de confusión y que se conozcan las covarianzas de las variables, lo cual no ocurre siempre. En cualquier caso, y no es por desanimar, muchas veces no podemos estar seguros de que se hayan controlado de forma adecuada los factores de confusión, ni siquiera empleando las técnicas más recientes y sofisticadas de análisis multinivel, ya que el origen puede estar en características no conocidas de la distribución de los datos entre los grupos.

Otros aspectos truculentos de los estudios ecológicos son el sesgo de ambigüedad temporal (ya lo hemos comentado, muchas veces es difícil asegurar que la exposición preceda al efecto) y la colinealidad (dificultad para asegurar los efectos de dos o más exposiciones que pueden ocurrir de forma simultánea). Además, aunque no son específicos de los estudios ecológicos, son muy susceptibles de presentar sesgos de información.

Ya veis que tenía razón al principio cuando os decía que los estudios ecológicos me parecen muchas cosas, pero de sencillos nada. De todas formas, es conveniente entender en qué se basa su metodología porque, con el desarrollo de las nuevas técnicas de análisis, han ganado en potencia y prestigio y es más que posible que nos encontremos con ellos cada vez con mayor frecuencia.

Pero no desesperéis, lo importante para nosotros, consumidores de bibliografía médica, es entender cómo funcionan para poder hacer una lectura crítica de los trabajos cuando nos encontremos antes ellos. Aunque, hasta donde yo sé, no existen listas de verificación tan estructurada como las que tiene CASPe para otros diseños, la lectura crítica la haremos siguiendo el esquema general habitual según nuestros tres pilares: validez, importancia y aplicabilidad.

El estudio de la VALIDEZ lo haremos de forma similar al de otros tipos de estudios observacionales transversales. Lo primero será comprobar que existe una definición clara de la población y de la exposición o efecto en estudio. Tendrán que estar claramente especificadas las unidades de análisis y su nivel de agregación, así como los métodos de medición del efecto y de la exposición, esta última, como ya sabemos, solo en los estudios analíticos.

La muestra del estudio deberá ser representativa, para lo cual tendremos que revisar los procedimientos de selección, los criterios de inclusión y exclusión y el tamaño. Estos datos tendrán también influencia en la validez externa de los resultados.

Como en cualquier estudio observacional, la medición de exposición y efecto debería hacerse de forma ciega e independiente, utilizando para ello instrumentos válidos. Los autores deberán presentar los datos de forma completa, teniendo en cuenta si hay valores perdidos o fuera de rango. Por último, debe haber un análisis correcto de los resultados, con un control de los sesgos típicos de estos estudios: ecológico, de información, de confusión, de ambigüedad temporal y colinealidad.

En el apartado de IMPORTANCIA podremos empezar por una valoración cuantitativa, resumiendo el resultado más importante y repasando la magnitud del efecto. Debemos buscar o calcular nosotros mismo, si es posible, las medidas de impacto más apropiadas: diferencias de tasas de incidencia, fracción atribuible en expuestos, etc. Si los autores no ofrecen estos datos, pero sí proporcionan el modelo de regresión, es posible calcular las medidas de impacto a partir de los coeficientes de multiplicación de las variables independientes del modelo. No os voy a poner aquí la lista de fórmulas por no hacer esta entrada todavía más antipática, pero que sepáis que existen por si un día las necesitáis.

A continuación realizaremos una valoración cualitativa de los resultados, tratando de valorar el interés clínico de la medida de resultado principal, el interés del tamaño del efecto  y el impacto que puede tener para el paciente, el sistema o la Sociedad.

Finalizaremos este apartado con una valoración comparativa (buscando estudios similares y comparando la medida principal de resultado y otras medidas alternativas) y una valoración de la relación entre beneficios, riesgos y costes, como haríamos con cualquier otro tipo de estudio.

Finalmente, consideraremos la APLICABILIDAD de los resultados en la práctica clínica, teniendo en cuenta aspectos como los efectos adversos, el coste económico, etc. Ya sabemos que el hecho de que el estudio esté bien realizado no quiere decir que tengamos que aplicarlo obligadamente en nuestro entorno.

Y aquí vamos a dejarlo por hoy. Cuando leáis o hagáis un estudio ecológico, tened cuidado de no caer en la tentación de sacar conclusiones de causalidad. Al margen de las trampas que os pueda tender la falacia ecológica, los estudios ecológicos son observacionales, así que pueden servir para generar hipótesis de causalidad, pero no para confirmarlas.

Y ahora sí que nos vamos. No os dije quién ganó la pelea entre King Kong y Godzilla para no hacer de spoiler, pero seguro que los más atentos ya lo habréis imaginado. Al fin y al cabo, y para su desgracia, solo uno de los dos viajó después a Nuera York. Pero esa es otra historia…

Y tú ¿de quién eres?

Como ya sabemos por entradas previas, la sistemática de la medicina basada en la evidencia comienza con una laguna de conocimiento que nos mueve a realizar una pregunta clínica estructurada. Una vez que tenemos elaborada la pregunta, utilizaremos sus componentes para hacer una búsqueda bibliográfica y obtener las mejores pruebas disponibles para solucionar nuestra duda.

Y aquí viene, quizás, la parte más temida de la medicina basada en la evidencia: la lectura crítica de los trabajos encontrados. En realidad, la cosa no es para tanto ya que, con un poco de práctica, la lectura crítica consiste únicamente en aplicar de forma sistemática una serie de preguntas sobre el trabajo que estamos analizando. El problema viene a veces en saber qué preguntas tenemos que hacer, ya que esta sistemática tiene diferencias según el diseño del estudio que estemos valorando.

Decir que por diseño entendemos el conjunto de procedimientos, métodos y técnicas utilizados con los participantes del estudio, durante la recopilación de los datos y durante el análisis e interpretación de los resultados para obtener las conclusiones del estudio. Y es que hay una miríada de diseños de estudios posibles, sobre todo en los últimos tiempos en que a los epidemiólogos les ha dado por hacer diseños mixtos de estudios observacionales. Además, la terminología puede a veces ser confusa y utilizar términos que no nos aclaran bien cuál es el diseño que tenemos delante. Es como cuando llegamos a una boda de alguien de una familia numerosa y nos encontramos con un primo que no sabemos de dónde sale. Aunque busquemos los parecidos físicos, lo más seguro serán acabar preguntándole: y tú, ¿de quién eres? Solo así sabremos si es de la parte del novio o de la novia.

Lo que vamos a hacer en esta entrada es algo parecido. Vamos a tratar de establecer una serie de criterios de clasificación de estudios para, finalmente, establecer una serie de preguntas cuyas respuestas nos permitan identificar a qué familia pertenece.

Para empezar, el tipo de pregunta clínica a la que trata de responder el trabajo puede darnos alguna orientación. Si la pregunta es de tipo diagnóstico, lo más probable es que nos encontremos ante lo que se denomina estudio de pruebas diagnósticas, que suele ser un diseño en el que a una serie de participantes se les somete, de forma sistemática e independiente, a la prueba en estudio y al patrón de referencia (el gold standard, para aquellos que sepan inglés). Es un tipo de diseño especialmente pensado para este tipo de preguntas pero no os confiéis: a veces podremos ver preguntas de diagnóstico que tratan de responderse con otros tipos de estudios.

Si la pregunta es de tratamiento, lo más probable es que nos encontremos ante un ensayo clínico o, a veces, ante una revisión sistemática de ensayos clínicos. Sin embargo, no siempre existen ensayos sobre todo lo que busquemos y puede ocurrir que tengamos que conformarnos con un estudio observacional, como los de casos y controles o los de cohortes.

En caso de preguntas de pronóstico y de etiología/daño podremos encontrarnos ante un ensayo clínico, pero lo más habitual es que no sea posible realizar ensayos y solo existan estudios observacionales.

Una vez analizado este aspecto es posible que nos queden dudas sobre el tipo de diseño al que nos enfrentamos. Será entonces la hora de recurrir a nuestras preguntas acerca de seis criterios relacionados con el diseño metodológico: objetivo general de la pregunta clínica, direccionalidad del estudio, tipo de muestreo de los participantes, temporalidad de los sucesos, asignación de los factores de estudio y unidades de estudio utilizadas. Veamos con detalle qué significa cada uno de estos seis criterios, que veis resumidos en la tabla que os adjunto.

Según el objetivo, los estudios pueden ser descriptivos o analíticos. Un estudio descriptivo es aquel que, como su nombre indica, solo tiene la finalidad descriptiva de relatar cómo están las cosas, pero sin intención de establecer relaciones causales entre el factor de riesgo o exposición y el efecto estudiado (una determinada enfermedad o suceso de salud, en la mayor parte de los casos). Estos estudios responden a preguntas no muy complejas como ¿a cuántos? ¿dónde? o ¿a quién?, por lo que suelen ser sencillos y sirven para elaborar hipótesis que posteriormente necesitarán de estudios más complejos para su demostración.

Por el contrario, los estudios analíticos sí que tratan de establecer este tipo de relaciones, respondiendo a preguntas más del tipo ¿por qué? ¿cómo tratar? o ¿cómo prevenir? Como es lógico, para poder establecer este tipo de relaciones necesitarán tener un grupo con el que comparar (el grupo control). Esta será una pista útil para distinguir entre analíticos y descriptivos si nos queda alguna duda: la presencia de grupo de comparación será propia de los estudios analíticos.

La direccionalidad del estudio se refiere al orden en que se investigan la exposición y el efecto de esa exposición. El estudio tendrá una direccionalidad anterógrada cuando la exposición se estudia antes que el efecto y una direccionalidad retrógrada cuando se haga al contrario. Por ejemplo, si queremos investigar el efecto del tabaco sobre la mortalidad coronaria, podemos tomar una conjunto de fumadores y ver cuántos se mueren del corazón (anterógrada) o, al revés, tomar un conjunto de fallecidos por enfermedad coronaria y mirar a ver cuántos fumaban (retrógrada). Como es lógico, solo los estudios con direccionalidad anterógrada pueden asegurar que la exposición precede en el tiempo al efecto (¡ojo! no estoy diciendo que una sea causa del otro). Por último, decir que a veces podremos encontrarnos con estudios en los que exposición y efecto se estudian a la vez, hablando entonces de direccionalidad simultánea.

El tipo de muestreo tiene que ver con la forma de seleccionar los participantes del estudio. Estos pueden ser elegidos por estar sometidos al factor de exposición que nos interese, por haber presentado el efecto o por una combinación de los dos o, incluso, otros criterios ajenos a exposición y efecto.

Nuestro cuarto criterio es la temporalidad, que hace referencia a la relación en el tiempo entre el investigador y el factor de exposición o el efecto que se estudie. Un estudio tendrá una temporalidad histórica cuando efecto y exposición ya hayan ocurrido cuando se inicia el estudio. Por otra parte, cuando estos hechos tienen lugar durante la realización del estudio, este tendrá una temporalidad concurrente. A veces la exposición puede ser histórica y el efecto concurrente, hablándose entonces de temporalidad mixta.

Aquí me gustaría hacer un inciso sobre dos términos empleados por muchos autores y que os resultarán más familiares: prospectivos y retrospectivos. Serían estudios prospectivos aquellos en los que exposición y efecto no se han producido al inicio del estudio, mientras que serían retrospectivos aquellos en los que los hechos ya se han producido en el momento de realizar el estudio. Para rizar el rizo, cuando se combinan ambas situaciones hablaríamos de estudios ambispectivos. El problema con estos términos es que a veces se emplean de forma indistinta para expresar direccionalidad o temporalidad, que son cosas diferentes. Además, suelen asociarse con diseños determinados: los prospectivos con los estudios de cohortes y los retrospectivos con los de casos y controles. Quizás sea mejor emplear los criterios específicos de direccionalidad y temporalidad, que expresan los aspectos del diseño de forma más precisa.

Otros dos términos relacionados con la temporalidad son los de estudios transversales y longitudinales. Los transversales son aquellos que nos proporcionan una instantánea de cómo están las cosas en un momento dado, por lo que no permiten establecer relaciones temporales ni de causalidad. Suelen ser estudios de prevalencia y siempre de naturaleza descriptiva.

Por otra parte, en los longitudinales las variables se miden a lo largo de un periodo de tiempo, por lo que sí permiten establecer relaciones temporales, aunque sin control de cómo se asigna la exposición a los participantes. Estos pueden tener una direccionalidad anterógrada (como en los estudios de cohortes) o retrógrada (como en los estudios de casos y controles).

El penúltimo de los seis criterios que vamos a tener en cuenta es la asignación de los factores de estudio. En este sentido, un estudio será observacional cuando los investigadores sean meros observadores que no actúan sobre la asignación de los factores de exposición. En estos casos, la relación entre exposición y efecto puede verse afectada por otros factores, denominados de confusión, por lo que no permiten extraer conclusiones de causalidad. Por otra parte, cuando el investigador asigna de una forma controlada el efecto según un protocolo previo establecido, hablaremos de estudios experimentales o de intervención. Estos estudios experimentales con aleatorización son los únicos que permiten establecer relaciones de causa-efecto y son, por definición, estudios analíticos.

El último de los criterios se refiere a las unidades de estudio. Los estudios pueden estar realizados sobre participantes individuales o sobre grupos de población. Estos últimos son los estudios ecológicos y los ensayos comunitarios, que tienen unas características de diseño específicas.En la figura adjunta podéis ver un esquema de cómo clasificar los diferentes diseños epidemiológicos según estos criterios. Cuando tengáis duda de qué diseño se corresponde con el trabajo que estéis valorando, seguid este esquema. Lo primero será decidir si el estudio es de carácter observacional o experimental. Esto suele ser sencillo, así que pasamos al siguiente punto. Un observacional descriptivo (sin grupo de comparación) se corresponderá con una serie de casos o con un estudio transversal.

Si el estudio observacional es analítico pasaremos a ver el tipo de muestreo, que podrá ser por la enfermedad o efecto de estudio (estudio de casos y controles) o por la exposición al factor de riesgo o protección (estudio de cohortes).

Por último, si el estudio es experimental buscaremos si la exposición o intervención ha sido asignada de forma aleatoria y con grupo de comparación. En caso afirmativo nos encontraremos ante un ensayo clínico aleatorizado y controlado. En caso negativo, probablemente se trate de un ensayo no controlado u otro tipo de diseño cuasiexperimental.

Y aquí lo vamos a dejar por hoy. Hemos visto cómo identificar los tipos de diseños metodológicos más habituales. Pero hay muchos más. Algunos con una finalidad muy específica y un diseño propio, como los estudios económicos. Y otros que combinan características de diseños básicos, como los estudio de caso-cohorte o los estudios anidados. Pero esa es otra historia…