Ciencia sin seso… locura doble

Píldoras sobre medicina basada en pruebas

Y tú ¿de quién eres?

image_pdf

Como ya sabemos por entradas previas, la sistemática de la medicina basada en la evidencia comienza con una laguna de conocimiento que nos mueve a realizar una pregunta clínica estructurada. Una vez que tenemos elaborada la pregunta, utilizaremos sus componentes para hacer una búsqueda bibliográfica y obtener las mejores pruebas disponibles para solucionar nuestra duda.

Y aquí viene, quizás, la parte más temida de la medicina basada en la evidencia: la lectura crítica de los trabajos encontrados. En realidad, la cosa no es para tanto ya que, con un poco de práctica, la lectura crítica consiste únicamente en aplicar de forma sistemática una serie de preguntas sobre el trabajo que estamos analizando. El problema viene a veces en saber qué preguntas tenemos que hacer, ya que esta sistemática tiene diferencias según el diseño del estudio que estemos valorando.

Decir que por diseño entendemos el conjunto de procedimientos, métodos y técnicas utilizados con los participantes del estudio, durante la recopilación de los datos y durante el análisis e interpretación de los resultados para obtener las conclusiones del estudio. Y es que hay una miríada de diseños de estudios posibles, sobre todo en los últimos tiempos en que a los epidemiólogos les ha dado por hacer diseños mixtos de estudios observacionales. Además, la terminología puede a veces ser confusa y utilizar términos que no nos aclaran bien cuál es el diseño que tenemos delante. Es como cuando llegamos a una boda de alguien de una familia numerosa y nos encontramos con un primo que no sabemos de dónde sale. Aunque busquemos los parecidos físicos, lo más seguro serán acabar preguntándole: y tú, ¿de quién eres? Solo así sabremos si es de la parte del novio o de la novia.

Lo que vamos a hacer en esta entrada es algo parecido. Vamos a tratar de establecer una serie de criterios de clasificación de estudios para, finalmente, establecer una serie de preguntas cuyas respuestas nos permitan identificar a qué familia pertenece.

Para empezar, el tipo de pregunta clínica a la que trata de responder el trabajo puede darnos alguna orientación. Si la pregunta es de tipo diagnóstico, lo más probable es que nos encontremos ante lo que se denomina estudio de pruebas diagnósticas, que suele ser un diseño en el que a una serie de participantes se les somete, de forma sistemática e independiente, a la prueba en estudio y al patrón de referencia (el gold standard, para aquellos que sepan inglés). Es un tipo de diseño especialmente pensado para este tipo de preguntas pero no os confiéis: a veces podremos ver preguntas de diagnóstico que tratan de responderse con otros tipos de estudios.

Si la pregunta es de tratamiento, lo más probable es que nos encontremos ante un ensayo clínico o, a veces, ante una revisión sistemática de ensayos clínicos. Sin embargo, no siempre existen ensayos sobre todo lo que busquemos y puede ocurrir que tengamos que conformarnos con un estudio observacional, como los de casos y controles o los de cohortes.

En caso de preguntas de pronóstico y de etiología/daño podremos encontrarnos ante un ensayo clínico, pero lo más habitual es que no sea posible realizar ensayos y solo existan estudios observacionales.

Una vez analizado este aspecto es posible que nos queden dudas sobre el tipo de diseño al que nos enfrentamos. Será entonces la hora de recurrir a nuestras preguntas acerca de seis criterios relacionados con el diseño metodológico: objetivo general de la pregunta clínica, direccionalidad del estudio, tipo de muestreo de los participantes, temporalidad de los sucesos, asignación de los factores de estudio y unidades de estudio utilizadas. Veamos con detalle qué significa cada uno de estos seis criterios, que veis resumidos en la tabla que os adjunto.

Según el objetivo, los estudios pueden ser descriptivos o analíticos. Un estudio descriptivo es aquel que, como su nombre indica, solo tiene la finalidad descriptiva de relatar cómo están las cosas, pero sin intención de establecer relaciones causales entre el factor de riesgo o exposición y el efecto estudiado (una determinada enfermedad o suceso de salud, en la mayor parte de los casos). Estos estudios responden a preguntas no muy complejas como ¿a cuántos? ¿dónde? o ¿a quién?, por lo que suelen ser sencillos y sirven para elaborar hipótesis que posteriormente necesitarán de estudios más complejos para su demostración.

Por el contrario, los estudios analíticos sí que tratan de establecer este tipo de relaciones, respondiendo a preguntas más del tipo ¿por qué? ¿cómo tratar? o ¿cómo prevenir? Como es lógico, para poder establecer este tipo de relaciones necesitarán tener un grupo con el que comparar (el grupo control). Esta será una pista útil para distinguir entre analíticos y descriptivos si nos queda alguna duda: la presencia de grupo de comparación será propia de los estudios analíticos.

La direccionalidad del estudio se refiere al orden en que se investigan la exposición y el efecto de esa exposición. El estudio tendrá una direccionalidad anterógrada cuando la exposición se estudia antes que el efecto y una direccionalidad retrógrada cuando se haga al contrario. Por ejemplo, si queremos investigar el efecto del tabaco sobre la mortalidad coronaria, podemos tomar una conjunto de fumadores y ver cuántos se mueren del corazón (anterógrada) o, al revés, tomar un conjunto de fallecidos por enfermedad coronaria y mirar a ver cuántos fumaban (retrógrada). Como es lógico, solo los estudios con direccionalidad anterógrada pueden asegurar que la exposición precede en el tiempo al efecto (¡ojo! no estoy diciendo que una sea causa del otro). Por último, decir que a veces podremos encontrarnos con estudios en los que exposición y efecto se estudian a la vez, hablando entonces de direccionalidad simultánea.

El tipo de muestreo tiene que ver con la forma de seleccionar los participantes del estudio. Estos pueden ser elegidos por estar sometidos al factor de exposición que nos interese, por haber presentado el efecto o por una combinación de los dos o, incluso, otros criterios ajenos a exposición y efecto.

Nuestro cuarto criterio es la temporalidad, que hace referencia a la relación en el tiempo entre el investigador y el factor de exposición o el efecto que se estudie. Un estudio tendrá una temporalidad histórica cuando efecto y exposición ya hayan ocurrido cuando se inicia el estudio. Por otra parte, cuando estos hechos tienen lugar durante la realización del estudio, este tendrá una temporalidad concurrente. A veces la exposición puede ser histórica y el efecto concurrente, hablándose entonces de temporalidad mixta.

Aquí me gustaría hacer un inciso sobre dos términos empleados por muchos autores y que os resultarán más familiares: prospectivos y retrospectivos. Serían estudios prospectivos aquellos en los que exposición y efecto no se han producido al inicio del estudio, mientras que serían retrospectivos aquellos en los que los hechos ya se han producido en el momento de realizar el estudio. Para rizar el rizo, cuando se combinan ambas situaciones hablaríamos de estudios ambispectivos. El problema con estos términos es que a veces se emplean de forma indistinta para expresar direccionalidad o temporalidad, que son cosas diferentes. Además, suelen asociarse con diseños determinados: los prospectivos con los estudios de cohortes y los retrospectivos con los de casos y controles. Quizás sea mejor emplear los criterios específicos de direccionalidad y temporalidad, que expresan los aspectos del diseño de forma más precisa.

Otros dos términos relacionados con la temporalidad son los de estudios transversales y longitudinales. Los transversales son aquellos que nos proporcionan una instantánea de cómo están las cosas en un momento dado, por lo que no permiten establecer relaciones temporales ni de causalidad. Suelen ser estudios de prevalencia y siempre de naturaleza descriptiva.

Por otra parte, en los longitudinales las variables se miden a lo largo de un periodo de tiempo, por lo que sí permiten establecer relaciones temporales, aunque sin control de cómo se asigna la exposición a los participantes. Estos pueden tener una direccionalidad anterógrada (como en los estudios de cohortes) o retrógrada (como en los estudios de casos y controles).

El penúltimo de los seis criterios que vamos a tener en cuenta es la asignación de los factores de estudio. En este sentido, un estudio será observacional cuando los investigadores sean meros observadores que no actúan sobre la asignación de los factores de exposición. En estos casos, la relación entre exposición y efecto puede verse afectada por otros factores, denominados de confusión, por lo que no permiten extraer conclusiones de causalidad. Por otra parte, cuando el investigador asigna de una forma controlada el efecto según un protocolo previo establecido, hablaremos de estudios experimentales o de intervención. Estos estudios experimentales con aleatorización son los únicos que permiten establecer relaciones de causa-efecto y son, por definición, estudios analíticos.

El último de los criterios se refiere a las unidades de estudio. Los estudios pueden estar realizados sobre participantes individuales o sobre grupos de población. Estos últimos son los estudios ecológicos y los ensayos comunitarios, que tienen unas características de diseño específicas.En la figura adjunta podéis ver un esquema de cómo clasificar los diferentes diseños epidemiológicos según estos criterios. Cuando tengáis duda de qué diseño se corresponde con el trabajo que estéis valorando, seguid este esquema. Lo primero será decidir si el estudio es de carácter observacional o experimental. Esto suele ser sencillo, así que pasamos al siguiente punto. Un observacional descriptivo (sin grupo de comparación) se corresponderá con una serie de casos o con un estudio transversal.

Si el estudio observacional es analítico pasaremos a ver el tipo de muestreo, que podrá ser por la enfermedad o efecto de estudio (estudio de casos y controles) o por la exposición al factor de riesgo o protección (estudio de cohortes).

Por último, si el estudio es experimental buscaremos si la exposición o intervención ha sido asignada de forma aleatoria y con grupo de comparación. En caso afirmativo nos encontraremos ante un ensayo clínico aleatorizado y controlado. En caso negativo, probablemente se trate de un ensayo no controlado u otro tipo de diseño cuasiexperimental.

Y aquí lo vamos a dejar por hoy. Hemos visto cómo identificar los tipos de diseños metodológicos más habituales. Pero hay muchos más. Algunos con una finalidad muy específica y un diseño propio, como los estudios económicos. Y otros que combinan características de diseños básicos, como los estudio de caso-cohorte o los estudios anidados. Pero esa es otra historia…

El más allá

image_pdf

Ya hemos visto en entradas anteriores como buscar información en Pubmed de diferentes maneras, desde la más sencilla, que es la búsqueda simple, hasta los métodos de búsqueda avanzada y de filtrado de resultados. Pubmed es, en mi modesta opinión, una herramienta de gran utilidad para los profesionales que tenemos que buscar información biomédica entre la vorágine de trabajos que se publican a diario.

Sin embargo, Pubmed no debe ser nuestra única herramienta de búsqueda. Sí, señoras y señores, no solo resulta que hay vida más allá de Pubmed, sino que hay mucha y, además, interesante.

La primera herramienta que se me ocurre por la similitud con Pubmed es Embase. Este es un buscador de Elsevier que tiene unos 32 millones de registros de unas 8500 revistas de 95 países. Como Pubmed, tiene varias opciones de búsqueda que le convierten en una herramienta versátil, algo más específica para estudios europeos y sobre fármacos que Pubmed (o eso dicen). Lo habitual cuando se quiere hacer una búsqueda exhaustiva es utilizar dos bases de datos, siendo frecuente la combinación de Pubmed y Embase, ya que ambos buscadores nos proporcionarán registros que el otro buscador no tendrá indexados. El gran inconveniente de Embase, sobre todo si se le compara con Pubmed, es que su acceso no es gratuito. De todas formas, los que trabajéis en centros sanitarios grandes podéis tener la suerte de tener una suscripción pagada a través de la biblioteca del centro.

Otra herramienta de gran utilidad es la que nos brinda la Cochrane Library, que incluye múltiples recursos entre los que se encuentran la Cochrane Database of Systematic Reviews (CDSR), el Cochrane Central Register of Controlled Trials (CENTRAL), el Cochrane Methodology Register (CMR), la Database of Abstracts of Reviews of Effects (DARE), la Health Technology Assessment Database (HTA) y la NHS Economic Evaluation Database (EED). Además, los hispanoparlantes podemos recurrir a la Biblioteca Cochrane Plus, que traduce al castellano los trabajos de la Cochrane Library. La Cochrane Plus no es gratuita, pero en España disfrutamos de una suscripción que amablemente nos paga el Ministerio de Sanidad, Igualdad y Servicios Sociales.

Y ya que hablamos de recursos en español, dejadme que arrime el ascua a mi sardina y os hable de dos buscadores que me son muy queridos. El primero es Epistemonikos, que es una fuente de revisiones sistemáticas y de otros tipos de evidencia científica. El segundo es Pediaclic, una herramienta de búsqueda de recursos de información sanitaria infantojuvenil, que clasifica los resultados en una serie de categorías como revisiones sistemáticas, guías de práctica clínica, resúmenes basados en la evidencia, etc.

En realidad, Epistemonikos y Pediaclic son metabuscadores. Un metabuscador es una herramienta que busca en diferentes bases de datos y no en una sola base de datos propia indexada como hacen Pubmed o Embase.

Hay muchos metabuscadores pero, sin duda, el rey de todos y una herramienta más que recomendable es TRIP Database.

TRIP (Turning Research Into Practice) es un metabuscador de acceso libre que se creó en 1997 para facilitar la búsqueda de información de bases de datos de medicina basada en la evidencia, aunque ha ido evolucionando y hoy en día recupera también información de bancos de imágenes, documentos para pacientes, libros de texto electrónicos e, incluso, de Medline (la base de datos en la que busca Pubmed). Vamos a echar un vistazo a su funcionamiento.

En la primera figura podéis ver la parte superior de la pantalla de inicio de TRIP. En la forma más sencilla seleccionaremos el enlace “Search” (es el que funciona por defecto cuando abrimos la página), escribiremos en la ventana de búsqueda los términos en inglés sobre los que queramos buscar y pulsaremos la lupa que hay a la derecha, con lo que el buscador nos mostrará la lista de resultados.

Aunque la última versión de TRIP incluye un selector de idioma, probablemente lo más recomendable sea introducir los términos en inglés en la ventana de búsqueda, procurando no poner más de dos o tres palabras para obtener los mejores resultados. Aquí funcionan los operadores lógicos igual que vimos en Pubmed (AND, OR y NOT), al igual que el operador de truncamiento “*”. De hecho, si escribimos varias palabras seguidas, TRIP incluye automáticamente el operador AND entre ellas.

Al lado de “Search” podéis ver un enlace que dice “PICO”. Este nos abre un menú de búsqueda en el que podemos seleccionar los cuatro componentes de la pregunta clínica estructurada de forma separada: pacientes (P), intervención (I), comparación (C) y resultados (outcome, O).

A la derecha hay dos enlaces más. “Advanced” permite realizar búsquedas avanzadas por campos del registro como el nombre de la revista, el título, año, etc. “Recent” nos permite acceder al historial de búsqueda. El problema es que estos dos enlaces están reservados en las últimas versiones para usuarios con licencia de pago. Antes eran gratis, así que esperemos que este defectillo no se extienda a todo el buscador y que, dentro de poco, TRIP acabe siendo un recurso de pago.

En la web del buscador tenéis tutoriales en vídeo sobre el funcionamiento de las diversas modalidades de TRIP. Pero lo más atractivo de TRIP es su forma de ordenar los resultados de la búsqueda, ya que lo hace según la fuente y la calidad de los mismos y la frecuencia de aparición de los términos de búsqueda en los trabajos encontrados. A la derecha de la pantalla aparece la lista de resultados organizados en una serie de categorías, como revisiones sistemáticas, sinopsis de medicina basada en la evidencia, guías de práctica clínica, preguntas clínicas, artículos de Medline filtrados mediante Clinical Queries, etc.

Podemos hacer clic en una de las categorías y restringir así el listado de resultados. Una vez hecho esto, podemos aún restringir más en base a subcategorías. Por ejemplo, si seleccionamos revisiones sistemáticas podremos posteriormente quedarnos solo con las de la Cochrane. Las posibilidades son muchas, así que os invito a probarlas.Veamos un ejemplo. Si escribo “asthma obesity children” en la cadena de búsqueda, obtengo 1117 resultados y la lista de recursos ordenados a la derecha, según veis en la segunda figura. Si ahora hago click en el índice “sistematic review” y, posteriormente, en “Cochrane”, me quedo con un solo resultado, aunque tengo el resto a golpe de click con solo seleccionar otras categorías. ¿Habéis visto que combinación de sencillez y potencia? En mi humilde opinión, con un manejo decente de Pubmed y la ayuda de TRIP podréis buscar todo lo que necesitéis, por muy escondido que esté.

Y para ir terminando la entrada de hoy, me vais a permitir que os pida un favor: no uséis Google para hacer búsquedas médicas o, por lo menos, no dependáis exclusivamente de Google, ni siquiera de Google Académico. Este buscador es bueno para encontrar un restaurante o un hotel para las vacaciones, pero no para controlar una búsqueda de información médica fiable y relevante como podemos hacer con otras herramientas de las que hemos hablado. Claro que con los cambios y evoluciones a los que nos tiene acostumbrados Google esto puede cambiar con el tiempo y, quizás, alguna vez tenga que reescribir esta entrada para recomendarlo (Dios no lo quiera).

Y aquí vamos a dejar el tema de las búsquedas bibliográficas. Ni que decir tiene que existen infinidad de buscadores más, de los cuáles podéis usar el que más os guste o el que tengáis accesible en vuestro ordenador o lugar de trabajo. En algunas ocasiones, como ya hemos comentado, es casi obligatorio usar más de uno, como es el caso de las revisiones sistemáticas, en las que suelen emplearse los dos grandes (Pubmed y Embase) y combinarlos con el de la Cochrane y algunos de los específicos del tema en cuestión. Porque todos los buscadores que hemos vistos son de índole general, pero los hay específicos de enfermería, psicología, fisioterapia, etc, además de específicos de enfermedad. Por ejemplo, si hacéis una revisión sistemática sobre una enfermedad tropical es conveniente utilizar una base de datos específica del tema, como LILACS, además de buscadores de revistas locales, si existen. Pero esa es otra historia…

Buscando las pepitas de oro

image_pdf

Estaba pensando en la entrada de hoy y no puedo evitar acordarme de los buscadores de la fiebre del oro de Alaska de finales del siglo XIX. Viajaban a Yukon, buscaban un buen arroyo como el Bonanza y recogían toneladas de barro. Pero ese barro no era el último paso de la búsqueda. De entre los sedimentos tenían que sacar las ansiadas pepitas de oro, para lo cual filtraban los sedimentos de forma cuidadosa hasta quedarse solo con el oro, cuando  había.

Cuando nosotros buscamos las mejores pruebas científicas para resolver nuestras preguntas clínicas hacemos algo parecido. Normalmente elegimos uno de los buscadores de Internet (como Pubmed, nuestro arroyo Bonanza) y solemos obtener una larga lista de resultados (nuestro montón de barro) que, finalmente, tendremos que filtrar para quedarnos solo con las pepitas de oro, si es que las hay entre los resultados de la búsqueda.

Ya hemos visto en entradas previas cómo hacer una búsqueda simple (la menos específica y que más barro nos va a proporcionar) y cómo refinar las búsquedas mediante el uso de los términos MeSH o el formulario de búsqueda avanzada, con los que buscamos obtener menos fango y más pepitas.

Sin embargo, lo habitual es que, una vez que tenemos la lista de resultados, tengamos que filtrarla para quedarnos solo con lo que más nos interese. Pues bien, para eso existe una herramienta muy popular dentro de Pubmed que es, oh sorpresa, el uso de filtros.

Vamos a ver un ejemplo. Supongamos que queremos buscar información sobre la relación entre asma y obesidad en la infancia. Lo ideal sería plantear una pregunta clínica estructurada para realizar una búsqueda específica, pero para ver más claramente cómo funcionan los filtros vamos a hacer una búsqueda simple “mal” planteada con lenguaje natural, para obtener un número mayor de resultados.

Entramos en la página de inicio de Pubmed, escribimos asthma and obesity in children en la caja de búsqueda y pulsamos el botón “Search”. Yo obtengo 1169 resultados, aunque el número puede variar si vosotros hacéis la búsqueda en otro momento.

Podéis ver el resultado en la primera figura. Si os fijáis, en el margen izquierdo de la pantalla hay una lista de texto con encabezados como “Tipos de artículos” (Article types), “disponibilidad de texto” (Text availability), etc. Cada apartado es uno de los filtros que yo tengo seleccionados para que se muestren en mi pantalla de resultados. Veis que debajo hay dos enlaces. El primero dice “Clear all” y sirve para desmarcar todos los filtros que hayamos seleccionado (en este caso, todavía ninguno). El segundo dice “Show additional filters” y, si clicamos sobre él, aparece una pantalla con todos los filtros disponibles para que elijamos cuáles queremos que se muestren en la pantalla. Echad un vistazo a todas las posibilidades.

Cuando queremos aplicar un filtro, solo tenemos que hacer click sobre el texto que hay debajo de cada encabezado del filtro. En nuestro caso vamos a filtrar solo los ensayos clínicos publicados en los últimos cinco años y de los que esté disponible el texto completo libre (sin tener que pagar suscripción). Para ello, hacemos click sobre “Clinical Trial”, “Free full text” y “5 years”, tal como veis en la segunda figura. Podéis comprobar que la lista de resultados se ha reducido a 11, un número mucho más manejable que los 1169 originales.

Ahora podemos quitar filtros de uno en uno (pulsando en la palabra “clear” que aparece al lado de cada filtro), quitarlos todos (pulsando “Clear all”) o añadir nuevos (haciendo click en el filtro que deseemos).

Dos precauciones a tener en cuenta con el uso de filtros. Lo primero, los filtros van a seguir estando activos hasta que los desactivemos nosotros. Si no nos damos cuenta de desactivarlos, podemos aplicarlos a búsquedas que hagamos después y obtener menos resultados de los esperados. Lo segundo, los filtros funcionan en base a los términos MeSH que se hayan asignado a cada artículo a la hora de indexarlo, por lo que los artículos muy recientes, que no ha dado tiempo de indexar todavía y que no tienen, por tanto, asignados sus términos MeSH, se perderán al aplicar los filtros. Por eso es recomendable aplicar los filtros al final del proceso de búsqueda, que es mejor acotar con otras técnicas como el uso de los MeSH o la búsqueda avanzada.

Otra opción que tenemos con los índices es automatizarlos para todas las búsquedas pero sin que nos recorten el número de resultados. Para ello tenemos que abrir cuenta en Pubmed clicando en “Sign in to NCBI” en el extremo superior derecho de la pantalla. Una vez que usemos el buscador como usuario registrado, podremos hacer click en un enlace arriba a la derecha que dice “Manage filters” y seleccionar los filtros que queramos. En lo sucesivo, las búsquedas que hagamos serán sin filtros, pero arriba a la derecha veréis enlaces a los filtros que hayamos seleccionados con el número de resultados entre paréntesis (podéis verlo en las dos primeras figuras que os he mostrado). Haciendo click, filtraremos la lista de resultados de modo similar a como hacíamos con los otros filtros, los que están accesibles sin registrarnos.

No me gustaría dejar el tema de Pubmed y de los filtros sin hablaros de otro recurso de búsqueda: las Clinical Queries. Podéis acceder a ellas haciendo click en el enlace de las herramientas de Pubmed (Pubmed Tools) de la página de inicio del buscador. Las Clinical Queries son una especie de filtro construido por desarrolladores de Pubmed que filtran la búsqueda para que solo se muestren artículos relacionados con investigación clínica.

Escribimos la cadena de búsqueda en la caja de búsqueda y obtenemos los resultados distribuidos en tres columnas, como veis en la tercera figura que o adjunto. En la primera columna se ordenan según el tipo de estudio (etiología, diagnóstico, tratamiento, pronóstico y guías de predicción clínica) y el alcance de la búsqueda que puede ser más específico (“Narrow”) o menos (“Broad”). Si seleccionamos “tratamiento” y alcance estrecho (“Narrow”), vemos que la búsqueda queda limitada a 25 trabajos.

En la segunda columna se ordenan revisiones sistemáticas, metanálisis, revisiones de medicina basada en la evidencia, etc. Por último, la tercera se centra en trabajos sobre genética.

Si queremos ver el listado completo podemos pulsar en “See all” al fondo del listado. Veremos entonces una pantalla similar a la de los resultados de búsqueda simple o avanzada, como veis en la cuarta figura que os adjunto. Si os fijáis en la caja de búsqueda, la cadena de búsqueda se ha modificado un poco. Una vez que tenemos este listado podemos modificar la cadena de búsqueda y volver a pulsar “Search”, aplicar de nuevo los filtros que nos convenga, etc. Como veis, las posibilidades son muchas.

Y con esto creo que vamos a ir despidiéndonos de Pubmed. Os animo a investigar otras muchas opciones y herramientas que están explicadas en los tutoriales de la página web, para algunos de las cuáles será necesario que tengáis abierta una cuenta en NCBI (recordad que es gratis). Podréis así, por ejemplo, fijar alarmas para que el buscador os avise cuando se publique algo nuevo sobre la búsqueda relacionada, entre otras muchas posibilidades. Pero esa es otra historia…

 

Afinando

image_pdf

Ya conocemos qué son los términos MeSH de Pubmed y cómo se puede realizar una búsqueda avanzada con ellos. Vimos que el método de búsqueda seleccionando los descriptores puede ser un poco laborioso, pero nos permitía seleccionar muy bien, no solo el descriptor, sino también alguno de sus subencabezados, incluir o no los términos que dependían de él en la jerarquía, etc.

Hoy vamos a ver otra forma de búsqueda avanzada algo más rápida a la hora de construir la cadena de búsqueda, y que nos permite, además, combinar varias búsquedas diferentes. Vamos a utilizar el formulario de búsqueda avanzada de Pubmed.

Para empezar, hacemos click en el enlace “Advanced” que hay debajo de la caja de búsqueda en la página de inicio de Pubmed. Esto nos lleva a la página de búsqueda avanzada, que veis en la figura 1. Echemos un vistazo.

En primer lugar hay una caja con el texto “Use the builder below to create your search” y sobre la que, inicialmente, no podemos escribir. Aquí se va ir formando la cadena de búsqueda que Pubmed va a emplear cuando pulsemos el Botón “Search”. Esta cadena podrá editarse pulsando sobre el enlace que hay debajo a la izquierda de la caja, “Edit”, lo que nos permitirá quitar o poner texto a la cadena de búsqueda que se haya elaborado hasta entonces, con texto libre o controlado, para volver a dar al botón “Search” y repetir la búsqueda con la nueva cadena. También hay un enlace debajo y a la derecha de la caja que dice “Clear”, con el que podremos borrar su contenido.

Debajo de esta caja de texto tenemos el constructor de la cadena de búsqueda (“Builder”), con varias filas de campos. En cada fila introduciremos un descriptor diferente, así que podremos añadir o quitar las filas que necesitemos con los botones “+” y “-“ que hay a la derecha de cada fila.

Dentro de cada fila hay varias cajas. La primera, que no está en la primera fila, es un desplegable con el operador booleano de búsqueda. Por defecto marca el AND, pero podemos cambiarlo si queremos. El siguiente es un desplegable en el que podemos seleccionar dónde queremos que se busque el descriptor. Por defecto marca “All Fields”, todos los campos, pero podemos seleccionar solo el título, solo el autor, solo último autor y muchas otras posibilidades. En el centro está la caja de texto donde introduciremos el descriptor. A su derecha, los botones “+” y “-“ que ya hemos nombrado. Y, por último, en el extremo derecho hay un enlace que dice “Show index list”. Este es una ayuda de Pubmed, ya que si pulsamos sobre él, nos dará una lista de los posibles descriptores que se ajustan a lo que hayamos escrito en la caja de texto.

Según vamos introduciendo términos en las cajas, creando las filas que necesitemos y seleccionando los operadores booleanos de cada fila, se irá formando la cadena de búsqueda, Cuando hayamos terminado podremos hacer dos cosas.

La más habitual será pulsar el botón “Search” y hacer la búsqueda. Pero hay otra posibilidad, que es clicar en el enlace “Add to history”, con lo que la búsqueda se almacena en la parte inferior de la pantalla, donde dice “History”. Esto será muy útil, ya que las búsquedas que se hayan guardado se pueden introducir en bloque en el campo de los descriptores al hacer una nueva búsqueda y combinarse con otras búsquedas o con series de descriptores. ¿Os parece un poco lioso? Vamos a aclararnos con un ejemplo.

Supongamos que yo trato la otitis media de mis lactantes con amoxicilina, pero quiero saber si otros fármacos, en concreto el cefaclor y la cefuroxima, mejoran el pronóstico. Aquí tenemos dos preguntas clínicas estructuradas. La primera diría “¿El tratamiento con cefaclor mejora el pronóstico de la otitis media en lactantes?”. La segunda diría lo mismo pero cambiando cefaclor por cefuroxima. Así que habría dos búsquedas diferentes, una con los términos infants, otitis media, amoxicillin, cefaclor y prognosis, y otra con los términos infants, otitis media, amoxicillin, cefuroxime y prognosis.

Lo que vamos a hacer es planear tres búsquedas. Una primera sobre artículos que hablen sobre el pronóstico de la otitis media en lactantes; una segunda sobre cefaclor; y una tercera sobre cefuroxima. Finalmente, combinaremos la primera con la segunda y la primera con la tercera en dos búsquedas diferentes, utilizando el booleano AND.

Empecemos. Escribimos otitis en la caja de texto de la primera fila de búsqueda y pulsamos el enlace “Show index”. Aparece un desplegable enorme con la lista de los descriptores relacionados (cuando veamos una palabra seguida de la barra inclinada y de otra palabra querrá decir que es un subencabezado del descriptor). Si buscamos, hay una posibilidad que dice “otitis/media infants” que se ajusta bien a lo que nos interesa, así que la seleccionamos. Ya podemos cerrar la lista de descriptores, pulsando el enlace “Hide index list”. Ahora en la segunda caja escribimos prognosis (debemos seguir el mismo método: escribir parte en la caja y seleccionar el término de la lista de índices). Nos aparece una tercera fila de cajas (si no es así, pulsamos el botón “+”). En esta tercera fila escribimos amoxicillin. Por último, vamos a excluir de la búsqueda los artículos que traten sobre la combinación de amoxicilina y ácido clavulánico. Escribimos clavulanic y pulsamos “Show index list”, con lo que nos enseña el descriptor “clavulanic acid”, que seleccionamos. Como lo que queremos es excluir estos trabajos de la búsqueda, cambiamos el operador booleano de esa fila a NOT.

En la figura 2 de pantalla podéis ver lo que hemos hecho hasta ahora. Veis que los términos están entre comillas. Eso es porque hemos elegido los MeSH de la lista de índices. Si escribimos directamente el texto en la caja aparecen sin comillas, lo que equivale a decir que la búsqueda se hace con texto libre (se pierde la precisión del lenguaje controlado de los términos MeSH). Fijaos además que en la primera caja de texto del formulario se nos ha escrito la cadena de búsqueda que hemos construido hasta ahora, que dice (((“otitis/media infants”) AND prognosis) AND amoxicillin) NOT “clavulanic acid”. Si quisiéramos, ya hemos dicho que podríamos modificarla, pero la vamos a dejar como está.

Ahora podríamos pulsar “Search” y hacer la búsqueda o directamente pulsar sobre el enlace “Add to history”. Para que veáis cómo se van recortando el número de artículos encontrados, pulsad en “Search”. Yo obtengo un listado con 98 resultados (el número puede depender del momento en el que hacéis la búsqueda). Muy bien, pulsamos en el enlace “Advanced” (en la parte superior de la pantalla) para volver al formulario de búsqueda avanzada.

En la parte inferior de la pantalla podemos ver guardada la primera búsqueda, numerada como #1 (podéis verlo en la figura 3).

Lo que queda ya es más sencillo. Escribimos cefaclor en la caja de texto y damos al enlace “Add to history”. Repetimos el proceso con el término cefuroxime. El resultados lo tenéis en la figura 4. Veis cómo Pubmed nos ha guardado las tres búsquedas en el historial de búsquedas. Si ahora queremos combinarlas, no tenemos más que hacer click sobre el número de cada una (se abrirá una ventana para que cliquemos en el booleano que nos interese, en este caso todos AND).

Primero hacemos click en #1 y #2, seleccionando AND. Veis cómo queda en la quinta captura de pantalla. Fijaos que la cadena de búsqueda se ha complicado un poco: (((((otitis/media infants) AND prognosis) AND amoxicillin) NOT clavulanic acid)) AND cefaclor. Como curiosidad os diré que, si escribimos directamente esta cadena en la caja de búsqueda simple, el resultado sería el mismo. Es el método que emplean los que dominan totalmente la jerga de este buscador. Pero nosotros tenemos que hacerlo con la ayuda del formulario de búsqueda avanzada. Pulsamos “Search” y obtenemos siete resultados que serán (eso esperamos) trabajos que comparen la amoxicilina con el cefaclor para el tratamiento de la otitis media en lactantes.

Volvemos a hacer click sobre el enlace “Advanced” y, en el formulario vemos que hay una búsqueda más, la #4, que es la combinación de la #1 y la #2. Ya podéis haceros una idea de lo que puede complicarse esto de combinar unas con otras, sumando o restando según el operador booleano que elijamos. Bueno, pues hacemos click sobre la #1 y la #3 y pulsamos “Search”, encontrando cinco trabajos que deben tratar sobre el problema que estamos buscando.

Vamos a ir terminando por hoy. Creo que queda demostrado que el uso de términos MeSH y de búsqueda avanzada rinde resultados más específicos que la búsqueda simple. Lo habitual con la búsqueda simple con lenguaje natural es obtener listados interminables de trabajos, la mayoría sin interés para nuestra pregunta clínica. Pero tenemos que tener en cuenta una cosa. Ya dijimos que hay una serie de personas que se dedican a adjudicar los descriptores MeSH a los artículos que entran en la base de datos de Medline. Como es lógico, desde que el artículo entra en la base de datos hasta que se le indexa (se le adjudican los MeSH) pasa algo de tiempo y durante ese tiempo no podremos encontrarlo usando términos MeSH. Por este motivo, puede no ser mala idea hacer una búsqueda con lenguaje natural después de la avanzada y mirar si en los primeros de la lista hay algún artículo que todavía no esté indexado y que nos pueda interesar.

Por último, comentar que las búsquedas pueden conservarse descargándolas a nuestro disco (pulsando el enlace “download history”) o, mucho mejor, creando una cuenta en Pubmed haciendo click sobre el enlace de la parte superior derecha de la pantalla que dice “Sign in to NCBI”. Esto es gratis y nos permite guardar el trabajo de búsqueda de una vez para otra, lo cual puede ser muy útil para usar otras herramientas como las Clinical Queries o los filtros del buscador. Pero esa es otra historia…

La jerga del buscador

image_pdf

Vimos en una entrada anterior cómo hacer una búsqueda con Pubmed utilizando el sistema más sencillo, que es introducir texto en lenguaje natural en la casilla de búsqueda simple y pulsar el botón “Search”. Este método es bastante fácil e incluso funciona bastante bien cuando estamos buscando algo sobre enfermedades muy raras pero, en general, nos dará una lista de resultados muy sensible y poco específica, lo que en este contexto quiere decir que obtendremos un número grande artículos, pero muchos de ellos tendrán poco que ver con lo que estamos buscando.

En estos casos tendremos que utilizar alguna herramienta para que el resultado sea más específico: menos artículos y más relacionados con el problema que origina la búsqueda. Una de la formas es realizar una búsqueda avanzada en lugar de la búsqueda simple, pero para ello tendremos que utilizar la jerga propia del buscador, los llamados descriptores temáticos de lenguaje controlado.

Un descriptor es un término que se utiliza para elaborar índices, también llamados tesauros. En lugar de usar las palabras del lenguaje natural, éstas se seleccionan o agrupan bajo unos términos específicos, que son los que van a servir de clave en el índice de la base de datos del buscador.

El tesauro, formado por el conjunto de descriptores, es específico de cada buscador, aunque muchos términos pueden ser comunes. En el caso de Pubmed los descriptores se conocen con el nombre de términos MeSH, que son las iniciales de su nombre en inglés, Medical Subject Headings.

Este tesauro o lista de términos con vocabulario controlado ha sido también elaborado por la National Library of Medicine y constituye otra base de datos con más de 30.000 términos que se actualizan con periodicidad anual. Dentro de la National Library hay una serie de personas cuya misión es analizar los nuevos artículos que se incorporan a la base de datos de Medline y asignarles los descriptores que mejor se ajustan a su contenido. Así, cuando busquemos utilizando un descriptor en concreto, hallaremos los artículos que estén indexados con este descriptor.

Pero la cosa de los descriptores es un poco más complicada de lo que pueda parecer, ya que se agrupan en jerarquías (MeSH Tree Structures), pudiendo un mismo descriptor pertenecer a varias jerarquías, además de tener subencabezados (Subheadings), de tal forma que podemos buscar utilizando el término MeSH general o restringir más la búsqueda usando uno de sus subencabezados. La verdad es que leyendo todo esto dan ganas de olvidarse de la búsqueda usando el tesauro, pero no podemos permitirnos ese lujo: la búsqueda utilizando la base de datos MeSH es la más efectiva y precisa, ya que el lenguaje ha sido controlado para eliminar imprecisiones y sinonimias propias del lenguaje natural.

Además, la cosa no es tan complicada cuando nos ponemos a trabajar con ello. Vamos a verlo con el ejemplo que usamos para mostrar la búsqueda simple. Queremos comparar la eficacia de la amoxicilina y del cefaclor sobre la duración de la otitis media en lactantes. Tras elaborar la pregunta clínica estructurada obtenemos nuestros cinco términos de búsqueda, en lenguaje natural: otitis, lactantes, amoxicilina, cefaclor y pronóstico.

Ahora podéis ir a la página de inicio de Pubmed (recordad el atajo: escribir pubmed en la barra del navegador y pulsar control-enter). Debajo de la ventana de búsqueda simple vimos que hay tres columnas. Nos fijamos en la de la derecha, “More Resources” y hacemos click en la primera de las opciones, “MeSH Database”, con lo que accedemos a la página de inicio de la base de datos de descriptores (como se ve en la primera figura).Si escribimos otitis en la ventana de búsqueda vemos que Pubmed nos echa una mano desplegando una lista con los términos que se parecen a lo que estamos escribiendo. Uno de ellos es otitis media, que es lo que nos interesa, así que la seleccionamos y Pubmed nos lleva a la siguiente página, donde hay varias opciones para elegir. En el momento en que yo hago la búsqueda hay tres opciones: “Otitis Media”, “Otitis Media, Suppurative” y “Otitis Media with Effusion”. Fijaos que Pubmed nos define cada uno, para que entendamos bien a qué se refiere con cada término. Estos son los tres términos MeSH que se ajustan a lo que hemos pedido, pero tenemos que elegir uno.

Lo más sencillo que podemos hacer desde esta ventana es marcar el cuadro de selección que hay a la izquierda del término que nos interese y pulsar el botón que hay en la parte derecha de la pantalla y que dice “add to search builder”. Si hacemos esto, Pubmed comienza a construir la cadena de búsqueda empezando con el término elegido (si hacemos esto con el primer término de la lista veréis que aparece el texto “Otitis Media”[Mesh] en la caja de texto “Pubmed Search Builder”, en la parte superior derecha de la pantalla (como veis en la figura adjunta).

Pero recordad que hemos dicho que los términos MeSH tienen subencabezados. Para llegar a ellos, en vez de marcar el cuadro de selección del término “Otitis Media”, hacemos click sobre él, abriéndose la ventana con los subencabezados (Subheadings), como podéis ver en la segunda figura.Cada uno de los términos con su cuadro de selección a la izquierda corresponde a un subencabezado del descriptor “Otitis Media” (el descriptor está en inglés, aunque en este caso coincida con el término en castellano. Os aconsejo trabajar siempre en inglés con la base de datos MeSH). Por ejemplo, si nos interesase hacer una búsqueda dirigida al coste del tratamiento, podríamos marcar el subencabezado “economics” y pulsar entonces el botón de añadir a la búsqueda. El texto que aparecería en la caja de texto de la cadena de búsqueda sería “Otitis Media/economics”[Mesh] y el resultado de la búsqueda sería un poco más específico.

Antes de dejar la ventana del término MeSH vamos a fijarnos en un par de cosas. Además de los subencabezados, que pueden ser más o menos numerosos, la parte inferior de la página nos muestra la jerarquía del descriptor (MeSH Tree Structure). Nuestro descriptor está en negrita, así que podemos ver de qué términos depende y cuáles dependen de él. En algún caso puede interesarnos más utilizar un término superior para la búsqueda, así que no tendremos más que hacer click sobre él para ir a su propia ventana. Si hacemos esto, en general, la búsqueda será más sensible y menos específica (más ruido y menos nueces).

También podemos hacer click en un término que esté por debajo en la jerarquía, haciendo la búsqueda más específica y disminuyendo el número de resultados.

Y la cosa no acaba aquí. Si seleccionamos un término MeSH para la búsqueda, en ésta se incluyen los términos que están por debajo en la jerarquía. Por ejemplo, si seleccionamos el descriptor “Otitis Media” se incluirán en la búsqueda todos los que cuelgan de él (mastoidits, otits con derrame, otitis supurativa y petrositis, que pueden no interesarnos en absoluto). Esto podemos evitarlo marcando el cuadro que dice “Do not include MeSH terms found below this term in the MeSH hierarchy” (no incluir los términos que estén por debajo en la jerarquía).

Bueno, creo que vamos a ir terminando con este ejemplo, si es que todavía hay alguien que sigue leyendo a estas alturas. Supongamos que optamos por lo más sencillo: vamos a “Otitis Media” y lo añadimos a la búsqueda. A continuación escribimos el segundo término de búsqueda en la ventada de búsqueda de la base de datos: infants. Nos salen 14 posibilidades, seleccionamos la primera (“Infant”) y lo añadimos a la búsqueda. Hacemos lo mismo con “Amoxicillin”, “Cefaclor” y “Prognosis”. Cuando hemos añadido todos a la cadena de búsqueda (fijaos que el operador booleano por defecto es AND, pero podemos cambiarlo), la cade de búsqueda es la siguiente: ((((“Otitis Media”[Mesh]) AND “Infant”[Mesh]) AND “Amoxicillin”[Mesh]) AND “Cefaclor”[Mesh]) AND “Prognosis”[Mesh].

Finalmente, pulsamos el botón “Search Pubmed” y obtenemos el resultado de la búsqueda que, en este caso, es un poco más restringida que la que obteníamos con lenguaje natural (esto suele ser lo habitual).

Si quisiésemos quitar los trabajos sobre el clavulánico, como hicimos en el ejemplo con la búsqueda simple, podríamos añadir el término clavulanate igual que con añadimos los otros términos, pero cambiando el operador booleano AND por el operador NOT. Pero hay otra forma que es, incluso, más sencilla. Si os fijáis, cuando Pubmed nos da la lista de resultados, en la ventana de búsqueda de Pubmed está escrita la cadena de búsqueda que se ha utilizado y nosotros podemos añadir o quitar términos de esta cadena, usando términos MeSH o lenguaje natural, lo que más nos convenga. Así que, en nuestro ejemplo, a la cadena de texto le añadiríamos NOT clavulanate en la caja de búsqueda y volveríamos a pulsar sobre el botón “Search”.

Y aquí lo vamos a dejar por hoy. Simplemente decir que hay otras formas de utilizar los términos MeSH, usando el formulario de búsqueda avanzada, y que podemos acotar todavía más los resultados utilizando algunos recursos, como las Clinical Queries o el uso de límites. Pero esa es otra historia…

La ostra de las mil perlas

image_pdf

Ya vimos en una entrada anterior que nuestra ignorancia como médicos es grande, lo que nos obliga a plantearnos preguntas sobre lo que hacer con nuestros pacientes en numerosas ocasiones.

Llegado este punto, nos interesará buscar y encontrar las mejores evidencias disponibles sobre el tema que nos ocupe, para lo que tendremos que hacer una buena búsqueda bibliográfica. Aunque se define la búsqueda bibliográfica como el conjunto de procedimientos manuales, automáticos e intelectuales encaminados a localizar, seleccionar y recuperar las referencias o trabajo que respondan a nuestro interés, la inmensa mayoría de las veces simplificamos el proceso y nos dedicamos únicamente a la búsqueda digital.

En estos casos tendremos que recurrir a una de las múltiples bases de datos biomédicas disponibles para buscar la perla que nos aclare nuestra duda y ayude a poner remedio a nuestra ignorancia. De todas estas bases de datos, no cabe duda que la más utilizada es Medline, la base de datos de la Biblioteca Nacional de Medicina de Estados Unidos (la National Library of Medicine, como la llaman ellos). El problema es que Medline es una base muy muy grande, con unos 16 millones de artículos de más de 4800 revistas científicas. Así que, como es fácil suponer, encontrar lo que se busca puede no ser una tarea sencilla en muchas ocasiones.

En realidad, para buscar en Medline lo que utilizamos es una herramienta que se conoce con el nombre de Pubmed. Este es un proyecto desarrollado por el Centro Nacional de Información en Biotecnología (National Center for Biotechnology Information, NCBI para los amigos), que permite acceder realmente a tres bases de datos de la National Library of Medicine: Medline, PreMedline y AIDS. Estas bases de datos no son filtradas, así que necesitaremos de conocimientos de lectura crítica para valorar los resultados (hay otros recursos que dan la información ya filtrada), ya que el buscador proporciona nada más (y nada menos) que la referencia del artículo y, en muchas ocasiones, un breve resumen. Y lo mejor de todo es que es gratis, cosa que no ocurre con todas las herramientas de búsqueda disponibles.

Así que, si queremos explorar esta ostra con miles de perlas, tendremos que aprender a utilizar la herramienta Pubmed para encontrar las perlas que estamos buscando. Podéis entrar en Pubmed haciendo clic sobre este enlace, aunque un pequeño atajo es escribir pubmed en la barra de direcciones del navegador y pulsar control-enter. El navegador sabrá donde queremos ir y nos redirigirá a la página de inicio de Pubmed. Echemos un vistazo entes de empezar a usarlo (ver la primera figura) (el aspecto de Pubmed cambia de vez en cuando, así que alguna cosa puede haber cambiado desde que escribí esta entrada, seguramente para mejorar).

Lo primero que vemos es el cuadro de búsqueda simple, donde podemos escribir los términos de búsqueda para obtener los resultados al pulsar el botón “Search”. Veis que debajo de este cuadro hay un enlace que dice “Advanced”, con el que accederemos a la pantalla de búsqueda avanzada, de la que hablaremos otro día. Hoy nos centraremos en la búsqueda simple.

Debajo hay tres columnas. La primera dice “Using PubMed”. Aquí podéis encontrar ayuda sobre el uso de esta herramienta, incluidos tutoriales sobre las distintas modalidades de búsqueda y las herramientas que incluye Pubmed. Os aconsejo bucear en esta sección para descubrir muchas más posibilidades de este buscador que las pocas que os voy a contar yo en esta entrada.

La segunda columna es la de las herramientas de Pubmed, “PubMed Tools”. Aquí hay dos de especial interés, la “Single Citation Matcher”, para encontrar la referencia en PubMed de un artículo en concreto conociendo algunos aspectos de su cita bibliográfica, y las “Clinical Queries”, que nos permiten filtrar los resultados de las búsquedas según el tipo de estudios o sus características.

La tercera columna muestra recursos del buscador, como la base de datos de los términos MeSH, que no es otra cosa que el tesaurus de los términos de búsqueda que incluye Pubmed.

Bueno, pues vamos a buscar algo para practicar. Pensemos, por ejemplo, que yo quiero saber si es mejor utilizar amoxicilina o cefaclor para el tratamiento de la otitis en los lactantes para que la evolución de la enfermedad sea menos prolongada. Lógicamente, esto no puedo escribirlo tal cual. Primero tengo que construir mi pregunta clínica estructurada y, después, utilizar los componentes de la pregunta como términos de búsqueda.

Mi pregunta sería la siguientes: en (P) lactantes con otitis, ¿(I) el tratamiento con cefaclor en (C) comparación con el tratamiento con amoxicilina, (0) reduce la duración de la enfermedad?. Así que, con este ejemplo, podríamos utilizar cinco términos de búsqueda: otitis, lactantes, amoxicilina, cefaclor y duración.

En la búsqueda sencilla introduciremos sin más las palabras en el cuadro de búsqueda (lenguaje natural) y haremos click en el cuadro “Search”. Aunque Pubmed acepta que introduzcamos palabras en castellano, es preferible ponerlas directamente en inglés, ya que así no tendremos que fiarnos de que las traduzca bien (hay palabras que incluso no las traduce y nos alteran la búsqueda).

El cuadro de búsqueda admite operadores booleanos, que son el “y”, el “o” y el “no” (se suelen ponen en mayúsculas en inglés: AND, OR y NOT). Cuando ponemos varias palabras seguidas sin ningún operador booleano, Pubmed entiende que las palabras van separadas por AND. Así, si tenemos un término formado por dos palabras y queremos que se considere como una, tendremos que escribirlo entre comillas. Por ejemplo, si escribimos apendicitis aguda y queremos que cuente como un solo término, habrá que introducir “acute apendicitis”.

Otro operador útil es el de truncamiento, que es colocar un asterisco al final de la raíz de la palabra para que se busquen todas las palabras que empiecen por esa raíz. Por ejemplo, infan* buscará por infant, infancy…

Vamos con nuestro ejemplo. Escribimos otitis AND infants AND amoxicillin AND cefaclor AND course y hacemos click en “Search” (ver la segunda figura). Hemos tenido bastante suerte, obtenemos solo 11 resultados (a vosotros os puede salir un número diferente si hacéis la búsqueda en otro momento).

Echamos un vistazo y vemos que los trabajos se ajustan más o menos a lo que buscamos. El único inconveniente es que nos incluye artículos que estudian el efecto de la amoxicilina-clavulánico, que no nos interesan. Pues vamos a quitarlos. Al texto de búsqueda le añadimos NOT clavulanate, con lo que la búsqueda queda limitada aún más.

Ya no tenemos más que seleccionar o clicar sobre los trabajos que nos interesen, para obtener el resumen (si está disponible) y, en algunos casos, incluso acceder al texto completo, aunque esto dependerá de que el texto sea de libre acceso o de los permisos o suscripciones que tenga la institución desde la que accedamos a Pubmed.

Hasta aquí hemos visto la forma más sencilla de buscar con Pubmed: búsqueda simple con texto libre. El problema es que usando esta forma de búsqueda no siempre vamos a obtener un resultado tan específico, sino que será mucho más frecuente que obtengamos miles de resultados, la mayor parte de ellos sin ningún interés para nosotros. En estos casos tendremos que recurrir a otros recursos como la búsqueda avanzada, el empleo de términos MeSH o el uso de las Clinical Queries de Pubmed. Pero esa es otra historia…

Quien no tenga preguntas…

image_pdf

…nunca obtendrá respuestas. Esto me lo enseñó una profesora de bioquímica hace ya más de dos vidas, cuando yo era un estudiante de primero de medicina. No recuerdo qué otras cosas me enseñó, pero esta la tengo grabada a fuego porque, no quiero recordar cuántos años después, sigue teniendo la misma vigencia.

Y resulta que la rueda de la medicina basada en pruebas se pone en marcha con una pregunta. Eso sí, el problema es que en medicina no siempre se obtiene respuesta por mucha pregunta que se tenga y, según algunos, en cuatro de cada cinco veces no obtendremos una respuesta satisfactoria por muy bien que sepamos buscar la información.

Los médicos, admitámoslo, somos bastante ignorantes, y el que piense lo contrario es porque no sabe lo ignorante que es, que es mucho peor y más peligroso. A menudo nos vemos asaltados por lagunas en nuestro conocimiento que queremos rellenar con la información que haya disponible. Se ha calculado que, a nivel de Atención Primaria, nos hacemos dos preguntas por cada 10 pacientes que recibimos, aumentando este número a cinco por cada paciente ingresado en Atención Hospitalaria. Se comprende fácilmente que no podemos hacer una búsqueda en la bibliografía cada vez que tengamos una duda, así que tendremos que establecer unas prioridades.

Al principio, cuando somos muy, pero que muy ignorantes, las preguntas son bastante generales. Son las llamadas preguntas básicas (de background, les llaman los que saben inglés), que buscan información sobre aspectos generales de enfermedades o tratamientos. Suelen estar compuestas por una raíz del tipo cómo, cuánto, cuándo o similar y un verbo, seguido de la enfermedad o lo que sea que estemos tratando. Preguntas de este estilo serían, por ejemplo, “¿qué germen produce la risperidiosis?” o “¿cómo se trata un ataque agudo de caspa?”.

En general, las preguntas básicas se pueden responder acudiendo a libros de texto o a artículos de revisión. Existen fuentes digitales de revisiones sobre temas generales, como la que es sin duda una de las más idolatradas, el UpToDate. Todos conoceremos algún uptodatero, que son personas fácilmente reconocibles porque en la sesión de primera hora de la mañana ya tienen en su poder la última información obtenida de UpToDate, de forma que te dan la respuesta incluso antes de que tú te hayas planteado la pregunta.

Pero, según vamos siendo más sabios, las preguntas que nos vamos haciendo implican ya aspectos concretos del tratamiento, pronóstico o lo que sea de una enfermedad en un tipo determinado de pacientes. Estas preguntas avanzadas o preguntas de primera línea (de foreground para los anglófilos) suelen tener una característica que las diferencia cualitativamente de las básicas: habitualmente se hacen como parte de la toma de decisiones clínicas en la fase previa a la búsqueda de información del problema que nos interese.

Es fundamental, por lo tanto, plantearlas bien y formularlas con claridad ya que, si no, no servirán ni para plantear la estrategia de búsqueda ni para tomar la decisión correcta que estemos buscando. Se forma así lo que se conoce como pregunta clínica estructurada, conocida en el argot de la medicina basada en pruebas como pregunta PICO, por las iniciales de sus componentes, que veremos a continuación.

La P representa al paciente, pero también al problema de interés o a la descripción clínica de la situación que estemos estudiando. Debemos definir muy bien las características más relevantes del grupo de pacientes o de la población que originó la pregunta, procurando no restringir demasiado las características del grupo, porque puede ocurrir que luego no encontremos nada que responda a la pregunta. Suele ser preferible seleccionar la población de una forma más general y, si la búsqueda es poco específica (tenemos muchos resultados), siempre podemos restringirla después.

La I representa la intervención principal, que puede ser un tratamiento, una prueba diagnóstica, un factor de riesgo o exposición, etc. La C se refiere a la comparación con la cuál contrastamos la intervención, y puede ser otro tratamiento, el placebo o, a veces, no hacer nada. Este componente no es obligatorio que exista siempre en la estructura de la pregunta, así que podemos obviarlo en los casos que no lo necesitemos.

Por último, la O representa el resultado de interés clínico de nuestra pregunta (de Outcome, en inglés), ya sea en términos de síntomas, complicaciones, calidad de vida, morbilidad, mortalidad o cualquier otra variable de resultado que elijamos. Así, es importante resaltar que el resultado que nos planteemos debería tener importancia desde el punto de vista clínico, sobre todo importancia desde el punto de vista del paciente. Por ejemplo, en un estudio para prevenir enfermedad coronaria podemos medir el efecto mediante la disminución de la troponina, pero seguro que el paciente agradecerá mucho más si lo que estimamos es la disminución de la mortalidad por infarto.

A veces, como ya os he comentado, no es pertinente hacer comparación con nada y el PICO se transforma en PIO. Otros añaden un quinto parámetro, el tiempo, y el PICO pasa a ser PICOt. También podéis verla como PECO o PECOt, cuando preferimos decir exposición mejor que intervención. Pero, usemos las letras que usemos, lo importante es que descompongamos la pregunta en estos elementos, que serán los que nos marcarán las palabras clave para la búsqueda de información y del tipo de estudio que necesitamos encontrar (os diré que algunos añaden el tipo de estudio como quinta o sexta letra al PICO).

Es muy importante encontrar un buen equilibrio entre la amplitud y la precisión de la pregunta. Por ejemplo, la pregunta “¿en lactantes con traumatismo craneal mejora el pronóstico el tratamiento con corticoides?” podría ser demasiado general para que resultase de ninguna utilidad. Por otra parte, “¿en lactantes de 3 a 6 meses de edad que se caen de la cuna desde 20 cm de altura y se dan en la parte izquierda de la frente contra el suelo de moqueta se puede mejorar el pronóstico utilizando metilprednisolona a dosis de 2 mg/kg/d durante cinco días seguidos?” se me hace demasiado específica como para utilizarla en la estrategia de búsqueda o para que sea útil para la toma de decisión clínica. Una forma más adecuada sería algo como “en lactantes con traumatismo craneal leve (los criterios de levedad deben estar previamente definidos), ¿mejora el pronóstico el tratamiento con corticoides?”. La P serían los lactantes que sufren un traumatismo craneal leve, la I sería el tratamiento con corticoides, la C sería, en este caso, no dar corticoides y, finalmente, la O sería el pronóstico (que podríamos sustituir por algo más concreto como la probabilidad de ingreso hospitalario, el tiempo hasta el alta, mortalidad, etc).

Veamos otro ejemplo: en (P) lactantes con bronquiolitis, ¿(I) el uso de corticoides intravenosos (C) en lugar de inhalados (O) disminuye el riesgo de ingreso?. O este otro: en (P) lactantes con otitis, ¿(I) el uso de antibióticos (O) acorta la duración de la enfermedad?.

Según el tipo de respuesta que persiguen, las preguntas clínicas pueden clasificarse en cuatro tipos fundamentales: diagnóstico, tratamiento, pronóstico y etiología o daño. Las preguntas de diagnóstico se refieren a cómo seleccionar e interpretar pruebas diagnósticas. Las preguntas de tratamiento tienen que ver con el tratamiento que podemos seleccionar para ofrecer más beneficios que riesgos y con un coste económico y de recursos que merezca la pena. Las preguntas de pronóstico sirven para estimar la probabilidad del curso clínico venidero y anticipar complicaciones. Por último, las preguntas de etiología o daño son las que nos sirven para identificar las causas de las enfermedades, incluyendo las iatrogénicas.

El tipo de pregunta es importante porque nos va a definir el tipo de diseño de estudio que con más probabilidad puede responder a nuestra pregunta. Así, las preguntas de diagnóstico se responden mejor con estudios de diseño específico para la evaluación de pruebas diagnósticas. Las preguntas de tratamiento o daño pueden responderse con ensayos clínicos (lo ideal) o con estudios observacionales. Sin embargo, las preguntas de pronóstico suelen precisar estudios observacionales para encontrar su respuesta. Por último, saber que existen otros tipos de pregunta clínica además de las cuatro básicas, como las de frecuencia (que se responderán con revisiones sistemáticas o estudios observacionales) o las de coste-beneficio (para las que necesitaremos estudios de evaluación económica).

Una pregunta estructurada bien planteada puede ayudarnos a resolver un problema clínico, pero también suele servir de origen a más preguntas, con las que ir rellenando lagunas para ser cada vez un poco menos ignorantes. Además, sin estructurar nuestra pregunta en los distintos componentes es tarea prácticamente imposible encontrar información útil. El que no me crea que escriba “asma” en PubMed o en otro buscador y mire el número de resultados. Algunos buscadores, como el de Trip Database, permiten incluso realizar la búsqueda utilizando la estructura PICO de la pregunta clínicamente estructurada. Pero, por desgracia, en la mayoría de los casos tendremos que buscar los sinónimos de cada componente y encontrar el descriptor adecuado para la base de datos donde vayamos a buscar, utilizando habitualmente técnicas de búsqueda avanzada. Pero esa es otra historia…

Los tres pilares de la sabiduría

image_pdf

Seguro que todos, con una frecuencia mayor de la que desearíamos, habremos encontrado alguna lagunilla en nuestro conocimiento que nos hacía dudar de los pasos a seguir en el diagnóstico o tratamiento de alguno de nuestros pacientes. Siguiendo la costumbre habitual, e intentando ahorrar esfuerzos, seguro que habremos preguntado a los colegas más cercanos, con la esperanza de que nos resolviesen el problema sin tener que acudir al temido PubMed (¡¿Quién ha dicho Google?!). Como último recurso hasta habremos consultado algún libro de medicina en un intento desesperado de obtener respuestas, pero ni los libros más gordos nos libran de tener que buscar en una base de datos de vez en cuando.

Y para hacerlo bien, convendrá que sigamos la sistemática de los cinco pasos que nos marca la Medicina Basada en la Evidencia: formular nuestra pregunta de forma estructurada (primer paso), hacer nuestra búsqueda bibliográfica (segundo paso) y leer críticamente los artículos que encontremos y que consideremos relevantes para el tema (tercer paso), para terminar con los dos últimos pasos que consistirán en combinar lo que hemos encontrado con nuestra experiencia y los valores del paciente (cuarto paso) y evaluar cómo influye en nuestro desempeño (quinto paso).

Así que nos arremangamos, elaboramos nuestra pregunta clínica estructurada y entramos en PubMed, Embase o TRIP, o la base de datos que nos interese para buscar respuestas. Tras no pocos sudores fríos conseguimos bajar el número inicial de resultados de 15234 y obtenemos el trabajo deseado que esperamos ilumine nuestra ignorancia. Pero, aunque la búsqueda haya sido impecable, ¿estamos seguros de que hemos encontrado lo que necesitamos? Comienza aquí la ardua tarea de realizar una lectura crítica del trabajo para valorar su capacidad real para solucionar nuestro problema.

Este paso, el tercero de los cinco que hemos visto y quizás el más temido de todos, es indispensable dentro del flujo metodológico de la Medicina Basada en la Evidencia. Y esto es así porque no es oro todo lo que reluce: incluso artículos publicados en revistas de prestigio por autores conocidos pueden tener una calidad deficiente, contener errores metodológicos, no tener nada que ver con nuestro problema o tener errores en la forma de analizar o presentar los resultados, muchas veces de manera sospechosamente interesada. Y no es porque lo diga yo, incluso hay quien piensa que el lugar más idóneo para guardar el 90% de lo que se publica es la papelera, sin importar si la revista es de alto impacto o si los autores son más famosos que Julio Iglesias (o su hijo Enrique, para el caso). Nuestra pobre excusa para justificar nuestro poco conocimiento sobre cómo elaborar y publicar trabajos científicos es que somos clínicos y no investigadores y, claro, lo mismo le ocurre muchas veces a los revisores de las revistas, que se tragan todos los gazapos que metemos los clínicos.

Así, pues, se entiende que la lectura crítica sea un paso fundamental para sacar el máximo provecho de la literatura científica, en especial en una era en la que abunda la información pero escasea el tiempo disponible para evaluarla.

Antes de entrar en la sistemática de la lectura, echaremos un vistazo por encima al documento y su resumen para tratar de ver si el artículo en cuestión puede cumplir nuestras expectativas. El primer paso que debemos realizar siempre es valorar si el trabajo contesta a nuestra pregunta. Esto suele ser así si hemos elaborado correctamente la pregunta clínica estructurada y hemos hecho una buena búsqueda de la evidencia disponible, pero de todos modos conviene siempre comprobar que el tipo de población, estudio, intervención, etc se ajustan a lo que buscamos.

Una vez que estamos convencidos de que es el trabajo que necesitamos, realizaremos la lectura crítica. Aunque los detalles dependerán del tipo de diseño del estudio, siempre nos apoyaremos en tres pilares básicos: validez, importancia y aplicabilidad.

La validez consiste en comprobar el rigor científico del trabajo para saber cuánto se aproxima a la verdad. Hay una serie de criterios comunes a todos los estudios, como son un diseño correcto, una población adecuada, la existencia de grupos de intervención y control homogéneos al comienzo del estudio, un seguimiento correcto, etc. A alguien se le ocurrió que esta validez debía llamarse mejor validez interna, así que podemos encontrarla también con este nombre.

El segundo pilar es la importancia, que mide la magnitud del efecto encontrado. Imaginemos el hipotensor de turno que con una p cargada de ceros es mejor que el de uso habitual, pero que disminuye la presión arterial una media de 5 mmHg. Por muchos ceros que tenga la p (que es estadísticamente significativa, eso no se lo quita nadie) no me negaréis que el impacto del efecto es más bien ridículo.

El último pilar es el de la aplicabilidad, que consiste en valorar si la situación, pacientes e intervención del estudio son lo suficientemente parecidos a nuestro ambiente como para generalizar los resultados. La aplicabilidad se conoce también como validez externa.

No todos los trabajos científicos pueden ser calificados de forma favorable en estos tres aspectos. Puede ocurrir que un trabajo muy válido (validez interna) que encuentre un efecto muy importante no sea aplicable en absoluto a nuestros pacientes. Además, no debemos olvidar que estamos hablando de una herramienta de trabajo. Aún con los trabajos más idóneos hay que tener siempre en cuenta los beneficios, daños y costes, así como las preferencias del paciente, aspecto este último del que nos olvidamos con más frecuencia de la que sería deseable.

Para facilitar la sistemática en el acto de la lectura crítica, existen diversas herramientas disponibles en Internet. Una de las más utilizadas son las plantillas o parrillas del grupo CASPe, más que recomendables para utilizar como guía al realizar una lectura crítica sin olvidar ningún aspecto importante. También en nuestro medio están disponibles las fichas de lectura crítica (FLC) de Osteba, que permiten almacenar los trabajos analizados. Y, para aquellos que les guste el inglés, pueden usar las herramientas escocesas de SIGN.

Lógicamente, las medidas específicas de impacto y asociación y los requisitos para cumplir los criterios de validez interna dependerán específicamente del tipo de diseño del estudio que tengamos entre manos. Pero esa es otra historia…

Un sesgo por ausencia

image_pdf

La unión hace la fuerza. Es un hecho. Los grandes objetivos se logran con más facilidad con la unión del esfuerzo de muchos. Y esto también se cumple en estadística.
En efecto, hay ocasiones en que los ensayos clínicos no tienen la potencia necesaria para demostrar lo que persiguen, ya sea por falta de muestra por motivos de tiempo, dinero o dificultad para reclutar participantes, o por otro tipo de limitaciones de tipo metodológico. En estos casos, es posible recurrir a una técnica que nos permite, en ocasiones, aunar el esfuerzo de múltiples ensayos para poder alcanzar la conclusión a la que no llegaríamos con ninguno de los ensayos por separado. Esta técnica es el metanálisis.
El metanálisis nos da una síntesis matemática cuantitativa exacta de los estudios incluidos en el análisis, generalmente los estudios recuperados durante la realización de una revisión sistemática. Lógicamente, si incluimos todos los estudios que se hayan realizado sobre un tema (o, al menos, todos los que sean relevantes para nuestra investigación), esa síntesis reflejará el conocimiento actual sobre el tema. Sin embargo, si la recogida está sesgada y nos faltan estudios, el resultado será reflejo solo de los artículos recogidos, no del total del conocimiento disponible.
Cuando planeamos la revisión debemos establecer una estructura de búsqueda global para tratar de encontrar todos los trabajos. Si no lo hacemos así podemos cometer un sesgo de recuperación, que tendrá el mismo efecto sobre el análisis cuantitativo que el sesgo de publicación. Pero, incluso con las búsquedas electrónicas modernas, es muy difícil encontrar toda la información relevante sobre un tema concreto.
En los casos de que falten estudios, la importancia del efecto dependerá de cómo se pierdan los estudios. Si se pierden al azar, todo quedará en un problema de menor información, con lo que la precisión de nuestros resultados será menor y los intervalos de confianza serán más amplios, pero puede que nuestras conclusiones sean correctas. Sin embargo, si los trabajos que no encontramos son sistemáticamente diferentes de los que encontramos, el resultado de nuestro análisis puede estar sesgado, ya que nuestras conclusiones solo podrán aplicarse a la muestra de trabajos, que será una muestra sesgada.
Existen una serie de factores que pueden contribuir a este sesgo de publicación. En primer lugar, es más probable que se publiquen los estudios con resultados significativos y, dentro de estos, es más probable que se publiquen cuando el efecto es mayor. Esto hace que los estudios con resultados negativos o con efectos de pequeña magnitud puedan no llegar a ser publicados, con lo que sacaremos una conclusión sesgada del análisis solo de los estudios grandes con resultado positivo.
En segundo lugar, como es lógico, los estudios publicados tienen más probabilidad de llegar a nuestras manos que los que no se publican en revistas científicas. Es el caso de tesis doctorales, comunicaciones a congresos, informes de agencias gubernamentales o, incluso, estudios pendientes de publicar realizados por investigadores del tema que estemos tratando. Por este motivo es tan importante hacer una búsqueda que incluya este tipo de trabajos, que se engloban dentro del término de literatura gris.
Por último, pueden enumerarse una serie de sesgos que influyen en la probabilidad de que un trabajo sea publicado o recuperado por el investigador que realiza la revisión sistemática tales como el sesgo de lenguaje (limitamos la búsqueda por idioma), el sesgo de disponibilidad (se incluyen solo los estudios que son fáciles de recuperar por parte del investigador), el sesgo de coste (se incluyen estudios que son gratis o baratos), el sesgo de familiaridad (solo se incluyen los de la disciplina del investigador), el sesgo de duplicación (los que tienen resultados significativos tienen más probabilidad de ser publicados más de una vez) y el sesgo de citación (los estudios con resultado significativo tienen más probabilidad de ser citados por otros autores).
Uno puede pensar que esto de perder trabajos durante la revisión no puede ser tan grave, ya que podría argumentarse que los estudios no publicados en revistas con revisión por pares suelen ser de peor calidad, por lo que no merecen ser incluidos en el metanálisis. Sin embargo, no está claro ni que las revistas científicas aseguren la calidad metodológica del trabajo ni que este sea el único método para hacerlo. Hay investigadores, como los de las agencias gubernamentales, que no están interesados en publicar en revistas científicas, sino en elaborar informes para quienes los encargan. Además, la revisión por pares no es garantía de calidad ya que, con demasiada frecuencia, ni el investigador que realiza el trabajo ni los encargados de revisarlo tienen una formación en metodología que asegure la calidad del producto final.
Existen herramientas para valorar el riesgo de sesgo de publicación. Quizás lo más sencillo puede ser representar un forest plot ordenado con los estudios más precisos en la parte superior y los menos en la inferior. Según nos desplazamos hacia abajo disminuye la precisión de los resultados, con lo que el efecto debe oscilar hacia ambos lados de la medida resumen de resultado. Si solo oscila hacia uno de los lados, podemos suponer de forma indirecta que no hemos detectado los trabajos que deben existir que oscilen hacia el lado contrario, por lo que seguramente tendremos un sesgo de publicación.
funnel_sesgoOtro procedimiento similar es la utilización del gráfico de embudo o funnel plot, tal como veis en la imagen adjunta. En este gráfico se representa en el eje X el tamaño del efecto y en el eje Y una medida de la varianza o el tamaño muestral, invertido. Así, en la parte superior estarán los estudios más grandes y precisos. Una vez más, según bajamos por el gráfico, la precisión de los estudios es menor y se van desplazando hacia los lados por error aleatorio. Cuando existe sesgo de publicación este desplazamiento es asimétrico. El problema del gráfico en embudo (funnel plot para los ingleses) es que su interpretación puede ser subjetiva, por lo que hay métodos numéricos para tratar de detectar el sesgo de publicación.
Y, llegados a este punto, ¿qué debemos hacer ante un sesgo de publicación? Quizás lo más adecuado será no preguntarse si existe el sesgo, sino cuánto afecta mis resultados (y dar por hecho que nos hemos dejado estudios sin incluir en el análisis).
La única forma de saber si el sesgo de publicación afecta a nuestras estimaciones sería comparar el efecto en los estudios recuperados y en los no recuperados pero, claro está, entonces no tendríamos que preocuparnos por el sesgo de publicación.
Para saber si el resultado observado es robusto o, por el contrario, es susceptible de estar sesgado por un sesgo de publicación, se han ideado dos métodos de la N de seguridad, los conocidos en inglés como los métodos fail-safe N.
El primero es el método de la N de seguridad de Rosenthal. Supongamos que tenemos un metanálisis con un efecto que es estadísticamente significativo, por ejemplo, un riesgo relativo mayor que uno con una p < 0,05 (o un intervalo de confianza del 95% que no incluye el valor nulo, el uno). Entonces nos hacemos una pregunta: ¿cuántos estudios con RR = 1 (valor nulo) tendremos que incluir hasta que la p no sea significativa? Si necesitamos pocos estudios (menos de 10) para hacer nulo el valor del efecto, podemos preocuparnos porque puede que el efecto sea nulo en realidad y nuestra significación sea producto de un sesgo de publicación. Por el contrario, si hacen falta muchos estudios, probablemente el efecto sea significativo de verdad. Este número de estudios es lo que significa la letra N del nombre del método. El problema de este método es que se centra en la significación estadística y no en la importancia de los resultados. Lo correcto sería buscar cuántos estudios hacen falta para que el resultado pierda importancia clínica, no significación estadística. Además, asume que los efectos de los estudios faltantes es nulo (uno en caso de riesgos relativos y odds ratios, cero en casos de diferencias de medias), cuando el efecto de los estudios faltantes puede ir en sentido contrario que el efecto que detectamos o en el mismo sentido pero de menor magnitud. Para evitar estos inconvenientes existe una variación de la fórmula anterior que valora la significación estadística y la importancia clínica. Con este método, que se denomina el de la N de seguridad de Orwin, se calcula cuántos estudios hacen falta para llevar el valor del efecto a un valor específico, que será generalmente el menor efecto que sea clínicamente importante. Este método permite también especificar el efecto medio de los estudios faltantes.
Y aquí dejamos los metanálisis y el sesgo de publicación por hoy. No hemos hablado nada de otros métodos matemáticos para detectar el sesgo de publicación como el de Begg y el de Egger. Hay incluso algún método gráfico aparte de los que hemos mencionado, como el de ajuste y relleno. Pero esa es otra historia…

Tres patas de un gato

image_pdf

Lo de buscarle tres pies al gato, o tres patas, es un dicho muy popular. Parece que se dice que busca tres pies a un gato aquél que trata de demostrar alguna cosa imposible, generalmente con tretas y engaños. En realidad, el refrán inicial hacía referencia a buscar cinco pies en lugar de tres. Esto parece más lógico, ya que como los gatos tienen cuatro patas, encontrarles tres de ellas es cosa fácil, pero encontrar cinco es algo imposible, a no ser que consideremos la cola del gato como otro pie, lo cual no tiene mucho sentido.

Pero hoy no vamos a hablar de gatos con tres, cuatro o cinco pies. Vamos a hablar sobre algo un poco más etéreo, como son los modelos multivariables de regresión lineal múltiple. Este sí que es un gato con multitud de pies, pero nosotros nos vamos a fijar únicamente en tres de ellos que reciben los nombres de colinealidad, tolerancia y factor de inflación (o incremento) de la varianza. Que nadie se desanime, es más fácil de lo que puede parecer de entrada.

Ya vimos en una entrada anterior cómo los modelos de regresión lineal simple relacionaban dos variables entre sí, de forma que las variaciones de una de ellas (la variable independiente o predictora) podían servir para calcular cómo iba a variar la otra variable (la variable dependiente). Estos modelos se representaban según la ecuación y = a + bx, donde x es la variable independiente e y la dependiente.

Pues bien, la regresión lineal múltiple añade más variables independientes, de tal manera que permite hacer predicciones de la variable dependiente según los valores de las variables predictoras o independientes. La fórmula genérica sería la siguiente:

y = a + bx1 + cx2 + dx3 + … + nxn, siendo n el número de variables independientes.

Una de las condiciones para que el modelo de regresión lineal múltiple funcione adecuadamente es que las variables independientes sean realmente independientes y no estén correlacionadas entre sí.

Imaginad un ejemplo absurdo en el que metemos en el modelo el peso en kilogramos y el peso en libras. Ambas variables variarán del mismo modo. De hecho el coeficiente de correlación, R, será 1, ya que prácticamente las dos representan la misma variable. Ejemplos tan tontos es difícil verlos en los trabajos científicos, pero hay otros menos evidentes (como incluir, por ejemplo la talla y el índice de masa corporal, que se calcula a partir del peso y de la talla) y otros que no son evidentes en absoluto para el investigador. Esto es lo que se llama colinealidad, que no es más que la existencia de una asociación lineal entre el conjunto de las variables independientes.

La colinealidad es un grave problema para el modelo multivariable, ya que las estimaciones obtenidas por el mismo son muy inestables, al hacerse más difícil separar el efecto de cada variable predictora.

Pues bien, para determinar si nuestro modelo sufre de colinealidad podemos construir una matriz donde se muestran los coeficientes de correlación, R, de unas variables con otras. En aquellos casos en los que observemos R altos, podremos sospechar que existe colinealidad. Ahora bien, si queremos cuantificar esto recurriremos a las otras dos patas del gato que hemos comentado al inicio: tolerancia y factor de inflación de la varianza.

Si elevamos el coeficiente R al cuadrado obtenemos el coeficiente de determinación (R2), que representa el porcentaje de la variación (o varianza) de una variable que es explicada por la variación en la otra variable. Así, nos encontramos con el concepto de tolerancia, que se calcula como el complementario de R2 (1-R2) y que representa la proporción de la variabilidad de dicha variable que no se explica por el resto de las variables independientes incluidas en el modelo de regresión.

De esta forma, cuanto más baja sea la tolerancia, más probable será que exista colinealidad. Suele considerarse que existe colinealidad cuando R2 es superior a 0,9 y, por tanto, la tolerancia está por debajo de 0,1.

Ya solo nos queda la tercera pata, que es el factor de inflación de la varianza. Este se calcula como el inverso de la tolerancia (1/T) y representa la proporción de la variabilidad (o varianza) de la variable que es explicada por el resto de las variables predictoras del modelo. Como es lógico, cuanto mayor sea el factor de inflación de la varianza, mayor será la probabilidad de que exista colinealidad. Generalmente se considera que existe colinealidad cuando el factor de inflación entre dos variables es mayor de 10 o cuando la media de todos los factores de inflación de todas las variables independientes es muy superior a uno.

Y aquí vamos a dejar los modelos multivariables por hoy. Ni que decir tiene que todo lo que hemos contado en la práctica se hace recurriendo a programas informáticos que nos calculan estos parámetros de manera sencilla.

Hemos visto aquí algunos de los aspectos de la regresión lineal múltiple, quizás el más utilizado de los modelos multivariables. Pero hay otros, como el análisis multivariante de la varianza (MANOVA), el análisis factorial o el análisis por conglomerados o clústeres. Pero esa es otra historia…