Ciencia sin seso… locura doble

Píldoras sobre medicina basada en pruebas

Entradas etiquetadasDispersión
image_pdf

El estadístico más deseado por una madre

Aquellos que estéis leyendo y que forméis parte de la mafia de los pediatras ya sabréis a que me estoy refiriendo: al percentil 50. No hay madre que no desee que su retoño se encuentre por encima de él en peso, talla, inteligencia y en todo lo que una buena madre pueda desear para su hijo. Por eso a los pediatras, que dedicamos nuestra vida al cuidado de los niños, nos gustan tanto los percentiles. Pero, ¿qué significado tiene el término percentil?. Empecemos desde el principio…

Cuando tenemos una distribución de valores de una variable podemos resumirla con una medida de centralización y una de dispersión. Las más habituales son la media y la desviación estándar, respectivamente, pero en ocasiones podemos utilizar otras medidas de centralización (como la mediana o la moda) y de dispersión.

La más básica de esas otras medidas de dispersión es el rango, que se define como la diferencia entre los valores mínimo y máximo de la distribución. Supongamos que reunimos los pesos al nacimiento de los últimos 100 niños de nuestra maternidad y los ordenamos tal y como aparecen en la tabla. El valor más bajo fue de 2200 gramos, mientras que el premio máximo se lo llevó un neonato que pesó 4000 gramos. El rango en este caso sería de 1800 gramos pero, claro está, si no disponemos de la tabla y solo nos dicen esto no tendríamos idea de cómo de grandes son nuestros recién nacidos. Por eso suele ser mejor expresar el rango con los valores mínimo y máximo. En nuestro caso sería de 2200 a 4000 gramos.

Si recordáis de cómo se calcula la mediana, veréis que está en 3050 gramos. Para completar el cuadro necesitamos una medida que nos diga cómo se distribuyen el resto de los pesos alrededor de la mediana y dentro del rango.

La forma más sencilla es dividir la distribución en cuatro partes iguales que incluya cada una el 25% de los niños. Cada uno de estos marcadores se denomina cuartil y hay tres: el primer cuartil (entre el mínimo y el 25%), el segundo cuartil (que coincide con la mediana y se sitúa entre el mínimo y el 50%) y el tercer cuartil (entre el mínimo y el 75%). Obtenemos así cuatro segmentos: del mínimo al primer cuartil, del primero al segundo (la mediana), del segundo al tercero y del tercero al máximo. En nuestro caso, los tres cuartiles serían 2830, 3050 y 3200 gramos. Hay quien llamaría a estos cuartiles el inferior, la mediana y el superior, pero estaríamos hablando de lo mismo.

Pues bien, si nos dicen que la mediana es de 3050 gramos y que el 50% de los niños pesan entre 2830 y 3200 gramos, ya nos hacemos una idea bastante aproximada de cuál es el peso al nacimiento de nuestros recién nacidos. Este intervalo se denomina rango intercuartílico y suele proporcionarse junto con la mediana para resumir la distribución. En nuestro caso: mediana de 3050 gramos, rango intercuartílico de 2830 a 3200 gramos.

Pero podemos ir mucho más allá. Podemos dividir la distribución en el número de segmentos que queramos. Los deciles la dividen en diez segmentos y nuestros venerados percentiles en cien.

Existe una fórmula bastante sencilla para calcular el percentil que queramos. Por ejemplo, el percentil P estará en la posición (P/100)x(n+1), donde n representa el tamaño de la muestra. En nuestra distribución de neonatos, el percentil 22 estaría en la posición (22/100)x(100+1) = 22,2, o sea, 2770 gramos.

Los más avispados ya os habréis dado cuenta que nuestros 3050 gramos corresponden, no solo a la mediana, sino también al decil quinto y al percentil 50, el deseado por nuestras madres.

La gran utilidad de los percentiles, además de dar satisfacción al 50% de las madres (aquellas que tienen a sus hijos por encima de la media) es que nos permiten estimar la probabilidad de determinado valor de la variable medida dentro de la población. En general, cuanto más cerca esté uno de la media siempre será mejor (por lo menos en medicina) y cuanto más alejado más probable será que alguien te lleve a un médico para ver porqué no estás en el dichoso percentil 50 o, incluso mejor, algo por encima.

Pero si de verdad queremos afinar más sobre la probabilidad de obtener un valor determinado dentro de una distribución de datos hay otros métodos que pasan por la estandarización de la medida de dispersión que utilicemos, pero esa es otra historia…

No todas las desviaciones son perversas

Incluso me atrevería a decir que hay desviaciones muy necesarias. Pero que nadie se entusiasme antes de tiempo. Aunque haya podido parecer otra cosa, vamos a hablar de cómo varían los valores de una variable cuantitativa en una distribución.

Cuando obtenemos los datos de un parámetro determinado en una muestra y queremos dar una idea resumida de cómo se comporta, lo primero que se nos ocurre es calcular una medida que la represente, así que echamos mano de la media, la mediana o cualquier otra medida de centralización.

Sin embargo, el cálculo del valor central da poca información si no lo acompañamos de otro que nos informe sobre la heterogeneidad de los resultados dentro de la distribución. Para cuantificar el grado de variación, los matemáticos, con muy poca imaginación, han inventado una cosa que llaman la varianza.

Para calcularla se restaría la media al valor de cada individuo con la idea de sumar todas estas restas y dividirlas entre el número de mediciones. Es como calcular la media de las diferencias de cada uno respecto al valor central de la distribución. Pero surge un pequeño problema: como los valores están por encima y por debajo de la media (por obligación, que para eso es la media), las diferencias positivas y negativas se anularían al sumarlas, con lo que obtendríamos un valor próximo a cero si la distribución es simétrica aunque el grado de variación fuese grande. Para evitar esto lo que se hace es elevar las restas al cuadrado antes de sumarlas, con lo que desaparecen los signos negativos y la suma siempre da un valor relacionado con la amplitud de las diferencias. Esto es lo que se conoce como varianza.

Por ejemplo, supongamos que medimos la presión arterial sistólica a 200 escolares seleccionados al azar y obtenemos una media de 100 mmHg. Nos ponemos a restar de cada valor la media, lo elevamos al cuadrado, sumamos todos los cuadrados y dividimos el resultado por 200 (el número de determinaciones). Obtenemos así la varianza, por ejemplo: 100 mmHg2. Y yo me pregunto, ¿qué leches es un milímetro de mercurio al cuadrado?. La varianza medirá bien la dispersión, pero no me negaréis que es un poco difícil de interpretar. Una vez más, algún genio matemático acude al rescate y discurre la solución: hacemos la raíz cuadrada de la varianza y así recuperamos las unidades originales de la variable. Acabamos de encontrarnos con la más famosa de las desviaciones: la desviación típica o estándar. En nuestro caso sería de 10 mmHg. Si consideramos las dos medidas nos hacemos idea de que la mayor parte de los escolares tendrán probablemente tensiones próximas a la media. Si hubiésemos obtenido una desviación típica de 50 mmHg pensaríamos que hay mucha variación individual de los datos de presión arterial, aunque la media de la muestra fuese la misma.

Un detalle para los puristas. La suma del cuadrado de las diferencias suele dividirse por el número de casos menos uno (n-1) en lugar de por el número de casos (n), que podría parecer más lógico. ¿Y por qué?. Capricho de los matemáticos. Por alguna arcana razón se consigue que el valor obtenido esté más próximo al valor de la población del que procede la muestra.

Ya tenemos, por tanto, los dos valores que nos definen nuestra distribución. Y lo bueno es que, no solo nos dan una idea del valor central y de la dispersión, sino de la probabilidad de encontrar un individuo de la muestra con un determinado valor.  Sabemos que el 95% tendrán un valor comprendido entre la media ± 2 veces la desviación típica (1,96 veces, para ser exactos) y el 99% entre la media ± 2,5 veces la desviación (2,58 veces, en realidad).

Esto suena peligrosamente parecido a los intervalos de confianza del 95% y 99%, pero no debemos confundirlos. Si repetimos el experimento de la tensión en escolares un número muy grande de veces, obtendremos una media ligeramente diferente cada vez. Podríamos calcular la media de los resultados de cada experimento y la desviación estándar de ese grupo de medias. Esa desviación estándar es lo que conocemos como el error estándar, y nos sirve para calcular los intervalos de confianza dentro de los cuales está el valor de la población de la que procede la muestra y que no podemos medir directamente ni conocer con exactitud. Por lo tanto, la desviación estándar nos informa de la dispersión de los datos en la muestra, mientras que el error estándar nos da idea de la precisión con que podemos estimar el verdadero valor de la variable que hemos medido en la población de la que procede la muestra.

Una última reflexión acerca de la desviación estándar. Aunque el valor de la variable en el 95% de la población esté en el intervalo formado por la media ± 2 veces la desviación típica, esta medida solo tiene sentido realizarla si la distribución es razonablemente simétrica. En caso de distribuciones con un sesgo importante la desviación típica pierde gran parte de su sentido y debemos utilizar otras medidas de dispersión, pero esa es otra historia…

Sí, en el medio está la virtud, pero…

¿Y dónde está el medio?. Esta pregunta, que parece el desvarío de una noche de verano, no debe ser tan sencilla de responder cuando disponemos de varias formas de localizar el medio o centro de una distribución de datos.

Y es que encontrar el virtuoso medio es muy útil para describir nuestros resultados. Si medimos una variable en 1500 pacientes a nadie se le pasa por la cabeza dar los resultados como un listado de los 1500 valores obtenidos. Habitualmente buscamos una especie de resumen que nos de una idea de cómo es esa variable en nuestra muestra, generalmente calculando una medida de centralización (el medio) y una de dispersión (cómo varían los datos alrededor del medio).

Supongamos que, por alguna razón difícil de explicar, queremos conocer la talla media de los usuarios del Metro de Madrid. Nos vamos a la estación más cercana y, cuando llega el convoy, hacemos bajar a los pasajeros del tercer vagón y les tallamos, obteniendo los resultados de la tabla 1.

Una vez que hemos recogido los datos, la medida de centralización que primero se nos viene a la cabeza es la media aritmética, que es el promedio de la talla. Todos sabemos cómo se calcula: la suma de todos los valores se divide por el número de valores obtenidos. En nuestro caso su valor sería de 170 cm y nos da una idea del promedio de estatura de los componentes de nuestra muestra.

Pero ahora supongamos que el autobús de la selección nacional de baloncesto ha pinchado las cuatro ruedas y los jugadores han tenido que tomar el metro para ir al partido, con la desgracia para nosotros de que viajan en el tercer vagón. Las tallas que recogeríamos se muestran en la tabla 2. En este caso la media es de 177 cm pero, ¿realmente está cerca del valor promedio de talla de los usuarios del Metro de Madrid?. Probablemente no. En este caso echaríamos mano de otra medida de centralización: la mediana.

Para calcular la mediana ordenamos los valores de talla de menor a mayor y tomamos el que ocupa el centro de la lista (tabla 3). Si tuviésemos 15 medidas, la mediana sería el valor de la número 8 (deja 7 por arriba y 7 por abajo). Al ser par, la mediana se calcula como la media aritmética de los dos valores centrales. En nuestro caso 169 + 172 = 170,5 cm, con toda probabilidad bastante más cercano al de la población y muy próximo al del vagón que paramos en el primer ejemplo.

Vemos, pues, que la media resume muy bien los datos cuando éstos se distribuyen de forma simétrica, pero que si la distribución está sesgada la mediana nos dará una idea más acertada del centro de la distribución.

Cuando la distribución está muy sesgada podemos emplear otros dos parámetros que son primos de la media aritmética: la media geométrica y la media armónica.

Para calcular la media geométrica calculamos el logaritmo neperiano de todos los valores, obtenemos su media aritmética y hacemos la transformación inversa exponencial con base e (el número e). Para la media armónica se calculan los valores recíprocos (1/valor), se calcula la media aritmética y se hace la transformación inversa (que nadie se asuste por la matemática del asunto, los programas de estadística calculan esta clase de cosas casi sin que tengamos que pedírselo). Estas dos medias son muy útiles cuando la distribución está muy sesgada por tener la mayor parte de los valores alrededor de un número y una distribución o cola larga hacia la derecha. Por ejemplo, si montamos un control de alcoholemia en carretera un lunes a las seis de la mañana, la mayor parte de los conductores estarán muy cerca del cero, pero siempre habrá algunas determinaciones de valores más altos (los que se han acostado tarde y los que prefieren desayunar fuerte). En estos casos cualquiera de estas dos medias daría un valor más representativo que la media aritmética o la mediana.

Un último apunte sobre otra medida de centralización. Si nos fijamos en los pantalones de nuestros viajeros de metro y vemos que 12 visten vaqueros, ¿qué medida usaríamos para informar de cuál es la prenda de vestir preferida?. En efecto: la moda. Es el valor que más se repite en una distribución y puede ser muy útil cuando estamos describiendo variables cualitativas en lugar de cuantitativas.

De todas formas, no hay que olvidar que para resumir adecuadamente una distribución no solo hay que elegir la medida de centralización correcta, sino que hay que acompañarla de una medida de dispersión, de las que también disponemos de unas cuantas. Pero esa es otra historia…